Newer
Older
/**********************************************************************/
/*! \class RtMidi
\brief An abstract base class for realtime MIDI input/output.
This class implements some common functionality for the realtime
MIDI input/output subclasses RtMidiIn and RtMidiOut.
RtMidi WWW site: http://music.mcgill.ca/~gary/rtmidi/
RtMidi: realtime MIDI i/o C++ classes
Copyright (c) 2003-2014 Gary P. Scavone
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation files
(the "Software"), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
Any person wishing to distribute modifications to the Software is
asked to send the modifications to the original developer so that
they can be incorporated into the canonical version. This is,
however, not a binding provision of this license.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
/**********************************************************************/
#include "RtMidi.h"
#include <sstream>
//*********************************************************************//
// RtMidi Definitions
//*********************************************************************//
RtMidi :: RtMidi()
: rtapi_(0)
{
}
RtMidi :: ~RtMidi()
{
if ( rtapi_ )
delete rtapi_;
rtapi_ = 0;
}
std::string RtMidi :: getVersion( void ) throw()
{
return std::string( RTMIDI_VERSION );
}
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
void RtMidi :: getCompiledApi( std::vector<RtMidi::Api> &apis ) throw()
{
apis.clear();
// The order here will control the order of RtMidi's API search in
// the constructor.
#if defined(__MACOSX_CORE__)
apis.push_back( MACOSX_CORE );
#endif
#if defined(__LINUX_ALSA__)
apis.push_back( LINUX_ALSA );
#endif
#if defined(__UNIX_JACK__)
apis.push_back( UNIX_JACK );
#endif
#if defined(__WINDOWS_MM__)
apis.push_back( WINDOWS_MM );
#endif
#if defined(__RTMIDI_DUMMY__)
apis.push_back( RTMIDI_DUMMY );
#endif
}
//*********************************************************************//
// RtMidiIn Definitions
//*********************************************************************//
void RtMidiIn :: openMidiApi( RtMidi::Api api, const std::string clientName, unsigned int queueSizeLimit )
{
if ( rtapi_ )
delete rtapi_;
rtapi_ = 0;
#if defined(__UNIX_JACK__)
if ( api == UNIX_JACK )
rtapi_ = new MidiInJack( clientName, queueSizeLimit );
#endif
#if defined(__LINUX_ALSA__)
if ( api == LINUX_ALSA )
rtapi_ = new MidiInAlsa( clientName, queueSizeLimit );
#endif
#if defined(__WINDOWS_MM__)
if ( api == WINDOWS_MM )
rtapi_ = new MidiInWinMM( clientName, queueSizeLimit );
#endif
#if defined(__MACOSX_CORE__)
if ( api == MACOSX_CORE )
rtapi_ = new MidiInCore( clientName, queueSizeLimit );
#endif
#if defined(__RTMIDI_DUMMY__)
if ( api == RTMIDI_DUMMY )
rtapi_ = new MidiInDummy( clientName, queueSizeLimit );
#endif
}
RtMidiIn :: RtMidiIn( RtMidi::Api api, const std::string clientName, unsigned int queueSizeLimit )
: RtMidi()
{
if ( api != UNSPECIFIED ) {
// Attempt to open the specified API.
openMidiApi( api, clientName, queueSizeLimit );
if ( rtapi_ ) return;
// No compiled support for specified API value. Issue a warning
// and continue as if no API was specified.
std::cerr << "\nRtMidiIn: no compiled support for specified API argument!\n\n" << std::endl;
}
// Iterate through the compiled APIs and return as soon as we find
// one with at least one port or we reach the end of the list.
std::vector< RtMidi::Api > apis;
getCompiledApi( apis );
for ( unsigned int i=0; i<apis.size(); i++ ) {
openMidiApi( apis[i], clientName, queueSizeLimit );
if ( rtapi_->getPortCount() ) break;
}
if ( rtapi_ ) return;
// It should not be possible to get here because the preprocessor
// definition __RTMIDI_DUMMY__ is automatically defined if no
// API-specific definitions are passed to the compiler. But just in
// case something weird happens, we'll throw an error.
std::string errorText = "RtMidiIn: no compiled API support found ... critical error!!";
throw( RtMidiError( errorText, RtMidiError::UNSPECIFIED ) );
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
}
RtMidiIn :: ~RtMidiIn() throw()
{
}
//*********************************************************************//
// RtMidiOut Definitions
//*********************************************************************//
void RtMidiOut :: openMidiApi( RtMidi::Api api, const std::string clientName )
{
if ( rtapi_ )
delete rtapi_;
rtapi_ = 0;
#if defined(__UNIX_JACK__)
if ( api == UNIX_JACK )
rtapi_ = new MidiOutJack( clientName );
#endif
#if defined(__LINUX_ALSA__)
if ( api == LINUX_ALSA )
rtapi_ = new MidiOutAlsa( clientName );
#endif
#if defined(__WINDOWS_MM__)
if ( api == WINDOWS_MM )
rtapi_ = new MidiOutWinMM( clientName );
#endif
#if defined(__MACOSX_CORE__)
if ( api == MACOSX_CORE )
rtapi_ = new MidiOutCore( clientName );
#endif
#if defined(__RTMIDI_DUMMY__)
if ( api == RTMIDI_DUMMY )
rtapi_ = new MidiOutDummy( clientName );
#endif
}
RtMidiOut :: RtMidiOut( RtMidi::Api api, const std::string clientName )
{
if ( api != UNSPECIFIED ) {
// Attempt to open the specified API.
openMidiApi( api, clientName );
if ( rtapi_ ) return;
// No compiled support for specified API value. Issue a warning
// and continue as if no API was specified.
std::cerr << "\nRtMidiOut: no compiled support for specified API argument!\n\n" << std::endl;
std::vector< RtMidi::Api > apis;
getCompiledApi( apis );
for ( unsigned int i=0; i<apis.size(); i++ ) {
openMidiApi( apis[i], clientName );
if ( rtapi_->getPortCount() ) break;
}
if ( rtapi_ ) return;
// It should not be possible to get here because the preprocessor
// definition __RTMIDI_DUMMY__ is automatically defined if no
// API-specific definitions are passed to the compiler. But just in
// case something weird happens, we'll thrown an error.
std::string errorText = "RtMidiOut: no compiled API support found ... critical error!!";
throw( RtMidiError( errorText, RtMidiError::UNSPECIFIED ) );
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
}
//*********************************************************************//
// Common MidiApi Definitions
//*********************************************************************//
MidiApi :: MidiApi( void )
: apiData_( 0 ), connected_( false ), errorCallback_(0)
{
}
MidiApi :: ~MidiApi( void )
{
}
void MidiApi :: setErrorCallback( RtMidiErrorCallback errorCallback )
{
errorCallback_ = errorCallback;
}
void MidiApi :: error( RtMidiError::Type type, std::string errorString )
{
if ( errorCallback_ ) {
static bool firstErrorOccured = false;
if ( firstErrorOccured )
return;
firstErrorOccured = true;
const std::string errorMessage = errorString;
errorCallback_( type, errorMessage );
firstErrorOccured = false;
return;
}
if ( type == RtMidiError::WARNING ) {
std::cerr << '\n' << errorString << "\n\n";
}
else if ( type == RtMidiError::DEBUG_WARNING ) {
#if defined(__RTMIDI_DEBUG__)
std::cerr << '\n' << errorString << "\n\n";
#endif
}
else {
std::cerr << '\n' << errorString << "\n\n";
throw RtMidiError( errorString, type );
}
}
//*********************************************************************//
// Common MidiInApi Definitions
//*********************************************************************//
MidiInApi :: MidiInApi( unsigned int queueSizeLimit )
: MidiApi()
{
// Allocate the MIDI queue.
inputData_.queue.ringSize = queueSizeLimit;
if ( inputData_.queue.ringSize > 0 )
inputData_.queue.ring = new MidiMessage[ inputData_.queue.ringSize ];
}
MidiInApi :: ~MidiInApi( void )
{
// Delete the MIDI queue.
if ( inputData_.queue.ringSize > 0 ) delete [] inputData_.queue.ring;
}
void MidiInApi :: setCallback( RtMidiIn::RtMidiCallback callback, void *userData )
{
if ( inputData_.usingCallback ) {
errorString_ = "MidiInApi::setCallback: a callback function is already set!";
error( RtMidiError::WARNING, errorString_ );
return;
}
if ( !callback ) {
errorString_ = "RtMidiIn::setCallback: callback function value is invalid!";
error( RtMidiError::WARNING, errorString_ );
inputData_.userCallback = callback;
inputData_.userData = userData;
inputData_.usingCallback = true;
}
void MidiInApi :: cancelCallback()
{
if ( !inputData_.usingCallback ) {
errorString_ = "RtMidiIn::cancelCallback: no callback function was set!";
error( RtMidiError::WARNING, errorString_ );
return;
}
inputData_.userCallback = 0;
inputData_.userData = 0;
inputData_.usingCallback = false;
}
void MidiInApi :: ignoreTypes( bool midiSysex, bool midiTime, bool midiSense )
{
inputData_.ignoreFlags = 0;
if ( midiSysex ) inputData_.ignoreFlags = 0x01;
if ( midiTime ) inputData_.ignoreFlags |= 0x02;
if ( midiSense ) inputData_.ignoreFlags |= 0x04;
}
double MidiInApi :: getMessage( std::vector<unsigned char> *message )
{
message->clear();
if ( inputData_.usingCallback ) {
errorString_ = "RtMidiIn::getNextMessage: a user callback is currently set for this port.";
error( RtMidiError::WARNING, errorString_ );
return 0.0;
}
if ( inputData_.queue.size == 0 ) return 0.0;
// Copy queued message to the vector pointer argument and then "pop" it.
std::vector<unsigned char> *bytes = &(inputData_.queue.ring[inputData_.queue.front].bytes);
message->assign( bytes->begin(), bytes->end() );
double deltaTime = inputData_.queue.ring[inputData_.queue.front].timeStamp;
inputData_.queue.size--;
inputData_.queue.front++;
if ( inputData_.queue.front == inputData_.queue.ringSize )
inputData_.queue.front = 0;
return deltaTime;
}
//*********************************************************************//
// Common MidiOutApi Definitions
//*********************************************************************//
MidiOutApi :: MidiOutApi( void )
: MidiApi()
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
{
}
MidiOutApi :: ~MidiOutApi( void )
{
}
// *************************************************** //
//
// OS/API-specific methods.
//
// *************************************************** //
#if defined(__MACOSX_CORE__)
// The CoreMIDI API is based on the use of a callback function for
// MIDI input. We convert the system specific time stamps to delta
// time values.
// OS-X CoreMIDI header files.
#include <CoreMIDI/CoreMIDI.h>
#include <CoreAudio/HostTime.h>
#include <CoreServices/CoreServices.h>
// A structure to hold variables related to the CoreMIDI API
// implementation.
struct CoreMidiData {
MIDIClientRef client;
MIDIPortRef port;
MIDIEndpointRef endpoint;
MIDIEndpointRef destinationId;
unsigned long long lastTime;
MIDISysexSendRequest sysexreq;
};
//*********************************************************************//
// API: OS-X
// Class Definitions: MidiInCore
//*********************************************************************//
static void midiInputCallback( const MIDIPacketList *list, void *procRef, void */*srcRef*/ )
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
{
MidiInApi::RtMidiInData *data = static_cast<MidiInApi::RtMidiInData *> (procRef);
CoreMidiData *apiData = static_cast<CoreMidiData *> (data->apiData);
unsigned char status;
unsigned short nBytes, iByte, size;
unsigned long long time;
bool& continueSysex = data->continueSysex;
MidiInApi::MidiMessage& message = data->message;
const MIDIPacket *packet = &list->packet[0];
for ( unsigned int i=0; i<list->numPackets; ++i ) {
// My interpretation of the CoreMIDI documentation: all message
// types, except sysex, are complete within a packet and there may
// be several of them in a single packet. Sysex messages can be
// broken across multiple packets and PacketLists but are bundled
// alone within each packet (these packets do not contain other
// message types). If sysex messages are split across multiple
// MIDIPacketLists, they must be handled by multiple calls to this
// function.
nBytes = packet->length;
if ( nBytes == 0 ) continue;
// Calculate time stamp.
if ( data->firstMessage ) {
message.timeStamp = 0.0;
data->firstMessage = false;
}
else {
time = packet->timeStamp;
if ( time == 0 ) { // this happens when receiving asynchronous sysex messages
time = AudioGetCurrentHostTime();
}
time -= apiData->lastTime;
time = AudioConvertHostTimeToNanos( time );
if ( !continueSysex )
message.timeStamp = time * 0.000000001;
}
apiData->lastTime = packet->timeStamp;
if ( apiData->lastTime == 0 ) { // this happens when receiving asynchronous sysex messages
apiData->lastTime = AudioGetCurrentHostTime();
}
//std::cout << "TimeStamp = " << packet->timeStamp << std::endl;
iByte = 0;
if ( continueSysex ) {
// We have a continuing, segmented sysex message.
if ( !( data->ignoreFlags & 0x01 ) ) {
// If we're not ignoring sysex messages, copy the entire packet.
for ( unsigned int j=0; j<nBytes; ++j )
message.bytes.push_back( packet->data[j] );
}
continueSysex = packet->data[nBytes-1] != 0xF7;
if ( !( data->ignoreFlags & 0x01 ) && !continueSysex ) {
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
// If not a continuing sysex message, invoke the user callback function or queue the message.
if ( data->usingCallback ) {
RtMidiIn::RtMidiCallback callback = (RtMidiIn::RtMidiCallback) data->userCallback;
callback( message.timeStamp, &message.bytes, data->userData );
}
else {
// As long as we haven't reached our queue size limit, push the message.
if ( data->queue.size < data->queue.ringSize ) {
data->queue.ring[data->queue.back++] = message;
if ( data->queue.back == data->queue.ringSize )
data->queue.back = 0;
data->queue.size++;
}
else
std::cerr << "\nMidiInCore: message queue limit reached!!\n\n";
}
message.bytes.clear();
}
}
else {
while ( iByte < nBytes ) {
size = 0;
// We are expecting that the next byte in the packet is a status byte.
status = packet->data[iByte];
if ( !(status & 0x80) ) break;
// Determine the number of bytes in the MIDI message.
if ( status < 0xC0 ) size = 3;
else if ( status < 0xE0 ) size = 2;
else if ( status < 0xF0 ) size = 3;
else if ( status == 0xF0 ) {
// A MIDI sysex
if ( data->ignoreFlags & 0x01 ) {
size = 0;
iByte = nBytes;
}
else size = nBytes - iByte;
continueSysex = packet->data[nBytes-1] != 0xF7;
}
else if ( status == 0xF1 ) {
// A MIDI time code message
if ( data->ignoreFlags & 0x02 ) {
size = 0;
iByte += 2;
}
else size = 2;
}
else if ( status == 0xF2 ) size = 3;
else if ( status == 0xF3 ) size = 2;
else if ( status == 0xF8 && ( data->ignoreFlags & 0x02 ) ) {
// A MIDI timing tick message and we're ignoring it.
size = 0;
iByte += 1;
}
else if ( status == 0xFE && ( data->ignoreFlags & 0x04 ) ) {
// A MIDI active sensing message and we're ignoring it.
size = 0;
iByte += 1;
}
else size = 1;
// Copy the MIDI data to our vector.
if ( size ) {
message.bytes.assign( &packet->data[iByte], &packet->data[iByte+size] );
if ( !continueSysex ) {
// If not a continuing sysex message, invoke the user callback function or queue the message.
if ( data->usingCallback ) {
RtMidiIn::RtMidiCallback callback = (RtMidiIn::RtMidiCallback) data->userCallback;
callback( message.timeStamp, &message.bytes, data->userData );
}
else {
// As long as we haven't reached our queue size limit, push the message.
if ( data->queue.size < data->queue.ringSize ) {
data->queue.ring[data->queue.back++] = message;
if ( data->queue.back == data->queue.ringSize )
data->queue.back = 0;
data->queue.size++;
}
else
std::cerr << "\nMidiInCore: message queue limit reached!!\n\n";
}
message.bytes.clear();
}
iByte += size;
}
}
}
packet = MIDIPacketNext(packet);
}
}
MidiInCore :: MidiInCore( const std::string clientName, unsigned int queueSizeLimit ) : MidiInApi( queueSizeLimit )
{
initialize( clientName );
}
MidiInCore :: ~MidiInCore( void )
{
// Close a connection if it exists.
closePort();
// Cleanup.
CoreMidiData *data = static_cast<CoreMidiData *> (apiData_);
MIDIClientDispose( data->client );
if ( data->endpoint ) MIDIEndpointDispose( data->endpoint );
delete data;
}
void MidiInCore :: initialize( const std::string& clientName )
{
// Set up our client.
MIDIClientRef client;
OSStatus result = MIDIClientCreate( CFStringCreateWithCString( NULL, clientName.c_str(), kCFStringEncodingASCII ), NULL, NULL, &client );
if ( result != noErr ) {
errorString_ = "MidiInCore::initialize: error creating OS-X MIDI client object.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
// Save our api-specific connection information.
CoreMidiData *data = (CoreMidiData *) new CoreMidiData;
data->client = client;
data->endpoint = 0;
apiData_ = (void *) data;
inputData_.apiData = (void *) data;
}
void MidiInCore :: openPort( unsigned int portNumber, const std::string portName )
{
if ( connected_ ) {
errorString_ = "MidiInCore::openPort: a valid connection already exists!";
error( RtMidiError::WARNING, errorString_ );
CFRunLoopRunInMode( kCFRunLoopDefaultMode, 0, false );
unsigned int nSrc = MIDIGetNumberOfSources();
if (nSrc < 1) {
errorString_ = "MidiInCore::openPort: no MIDI input sources found!";
error( RtMidiError::NO_DEVICES_FOUND, errorString_ );
return;
std::ostringstream ost;
ost << "MidiInCore::openPort: the 'portNumber' argument (" << portNumber << ") is invalid.";
errorString_ = ost.str();
error( RtMidiError::INVALID_PARAMETER, errorString_ );
return;
}
MIDIPortRef port;
CoreMidiData *data = static_cast<CoreMidiData *> (apiData_);
OSStatus result = MIDIInputPortCreate( data->client,
CFStringCreateWithCString( NULL, portName.c_str(), kCFStringEncodingASCII ),
midiInputCallback, (void *)&inputData_, &port );
if ( result != noErr ) {
MIDIClientDispose( data->client );
errorString_ = "MidiInCore::openPort: error creating OS-X MIDI input port.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
// Get the desired input source identifier.
MIDIEndpointRef endpoint = MIDIGetSource( portNumber );
if ( endpoint == 0 ) {
MIDIPortDispose( port );
MIDIClientDispose( data->client );
errorString_ = "MidiInCore::openPort: error getting MIDI input source reference.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
// Make the connection.
result = MIDIPortConnectSource( port, endpoint, NULL );
if ( result != noErr ) {
MIDIPortDispose( port );
MIDIClientDispose( data->client );
errorString_ = "MidiInCore::openPort: error connecting OS-X MIDI input port.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
// Save our api-specific port information.
data->port = port;
connected_ = true;
}
void MidiInCore :: openVirtualPort( const std::string portName )
{
CoreMidiData *data = static_cast<CoreMidiData *> (apiData_);
// Create a virtual MIDI input destination.
MIDIEndpointRef endpoint;
OSStatus result = MIDIDestinationCreate( data->client,
CFStringCreateWithCString( NULL, portName.c_str(), kCFStringEncodingASCII ),
midiInputCallback, (void *)&inputData_, &endpoint );
if ( result != noErr ) {
errorString_ = "MidiInCore::openVirtualPort: error creating virtual OS-X MIDI destination.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
// Save our api-specific connection information.
data->endpoint = endpoint;
}
void MidiInCore :: closePort( void )
{
if ( connected_ ) {
CoreMidiData *data = static_cast<CoreMidiData *> (apiData_);
MIDIPortDispose( data->port );
connected_ = false;
}
}
unsigned int MidiInCore :: getPortCount()
{
CFRunLoopRunInMode( kCFRunLoopDefaultMode, 0, false );
return MIDIGetNumberOfSources();
}
// This function was submitted by Douglas Casey Tucker and apparently
// derived largely from PortMidi.
CFStringRef EndpointName( MIDIEndpointRef endpoint, bool isExternal )
{
CFMutableStringRef result = CFStringCreateMutable( NULL, 0 );
CFStringRef str;
// Begin with the endpoint's name.
str = NULL;
MIDIObjectGetStringProperty( endpoint, kMIDIPropertyName, &str );
if ( str != NULL ) {
CFStringAppend( result, str );
CFRelease( str );
}
MIDIEntityRef entity = 0;
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
MIDIEndpointGetEntity( endpoint, &entity );
if ( entity == 0 )
// probably virtual
return result;
if ( CFStringGetLength( result ) == 0 ) {
// endpoint name has zero length -- try the entity
str = NULL;
MIDIObjectGetStringProperty( entity, kMIDIPropertyName, &str );
if ( str != NULL ) {
CFStringAppend( result, str );
CFRelease( str );
}
}
// now consider the device's name
MIDIDeviceRef device = 0;
MIDIEntityGetDevice( entity, &device );
if ( device == 0 )
return result;
str = NULL;
MIDIObjectGetStringProperty( device, kMIDIPropertyName, &str );
if ( CFStringGetLength( result ) == 0 ) {
CFRelease( result );
return str;
}
if ( str != NULL ) {
// if an external device has only one entity, throw away
// the endpoint name and just use the device name
if ( isExternal && MIDIDeviceGetNumberOfEntities( device ) < 2 ) {
CFRelease( result );
return str;
} else {
if ( CFStringGetLength( str ) == 0 ) {
CFRelease( str );
return result;
}
// does the entity name already start with the device name?
// (some drivers do this though they shouldn't)
// if so, do not prepend
if ( CFStringCompareWithOptions( result, /* endpoint name */
str /* device name */,
CFRangeMake(0, CFStringGetLength( str ) ), 0 ) != kCFCompareEqualTo ) {
// prepend the device name to the entity name
if ( CFStringGetLength( result ) > 0 )
CFStringInsert( result, 0, CFSTR(" ") );
CFStringInsert( result, 0, str );
}
CFRelease( str );
}
}
return result;
}
// This function was submitted by Douglas Casey Tucker and apparently
// derived largely from PortMidi.
static CFStringRef ConnectedEndpointName( MIDIEndpointRef endpoint )
{
CFMutableStringRef result = CFStringCreateMutable( NULL, 0 );
CFStringRef str;
OSStatus err;
int i;
// Does the endpoint have connections?
CFDataRef connections = NULL;
int nConnected = 0;
bool anyStrings = false;
err = MIDIObjectGetDataProperty( endpoint, kMIDIPropertyConnectionUniqueID, &connections );
if ( connections != NULL ) {
// It has connections, follow them
// Concatenate the names of all connected devices
nConnected = CFDataGetLength( connections ) / sizeof(MIDIUniqueID);
if ( nConnected ) {
const SInt32 *pid = (const SInt32 *)(CFDataGetBytePtr(connections));
for ( i=0; i<nConnected; ++i, ++pid ) {
MIDIUniqueID id = EndianS32_BtoN( *pid );
MIDIObjectRef connObject;
MIDIObjectType connObjectType;
err = MIDIObjectFindByUniqueID( id, &connObject, &connObjectType );
if ( err == noErr ) {
if ( connObjectType == kMIDIObjectType_ExternalSource ||
connObjectType == kMIDIObjectType_ExternalDestination ) {
// Connected to an external device's endpoint (10.3 and later).
str = EndpointName( (MIDIEndpointRef)(connObject), true );
} else {
// Connected to an external device (10.2) (or something else, catch-
str = NULL;
MIDIObjectGetStringProperty( connObject, kMIDIPropertyName, &str );
}
if ( str != NULL ) {
if ( anyStrings )
CFStringAppend( result, CFSTR(", ") );
else anyStrings = true;
CFStringAppend( result, str );
CFRelease( str );
}
}
}
}
CFRelease( connections );
}
if ( anyStrings )
return result;
// Here, either the endpoint had no connections, or we failed to obtain names
return EndpointName( endpoint, false );
}
std::string MidiInCore :: getPortName( unsigned int portNumber )
{
CFStringRef nameRef;
MIDIEndpointRef portRef;
char name[128];
std::string stringName;
CFRunLoopRunInMode( kCFRunLoopDefaultMode, 0, false );
std::ostringstream ost;
ost << "MidiInCore::getPortName: the 'portNumber' argument (" << portNumber << ") is invalid.";
errorString_ = ost.str();
error( RtMidiError::WARNING, errorString_ );
return stringName;
}
portRef = MIDIGetSource( portNumber );
nameRef = ConnectedEndpointName(portRef);
CFStringGetCString( nameRef, name, sizeof(name), CFStringGetSystemEncoding());
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
CFRelease( nameRef );
return stringName = name;
}
//*********************************************************************//
// API: OS-X
// Class Definitions: MidiOutCore
//*********************************************************************//
MidiOutCore :: MidiOutCore( const std::string clientName ) : MidiOutApi()
{
initialize( clientName );
}
MidiOutCore :: ~MidiOutCore( void )
{
// Close a connection if it exists.
closePort();
// Cleanup.
CoreMidiData *data = static_cast<CoreMidiData *> (apiData_);
MIDIClientDispose( data->client );
if ( data->endpoint ) MIDIEndpointDispose( data->endpoint );
delete data;
}
void MidiOutCore :: initialize( const std::string& clientName )
{
// Set up our client.
MIDIClientRef client;
OSStatus result = MIDIClientCreate( CFStringCreateWithCString( NULL, clientName.c_str(), kCFStringEncodingASCII ), NULL, NULL, &client );
if ( result != noErr ) {
errorString_ = "MidiOutCore::initialize: error creating OS-X MIDI client object.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
// Save our api-specific connection information.
CoreMidiData *data = (CoreMidiData *) new CoreMidiData;
data->client = client;
data->endpoint = 0;
apiData_ = (void *) data;
}
unsigned int MidiOutCore :: getPortCount()
{
CFRunLoopRunInMode( kCFRunLoopDefaultMode, 0, false );
return MIDIGetNumberOfDestinations();
}
std::string MidiOutCore :: getPortName( unsigned int portNumber )
{
CFStringRef nameRef;
MIDIEndpointRef portRef;
char name[128];
std::string stringName;
CFRunLoopRunInMode( kCFRunLoopDefaultMode, 0, false );
std::ostringstream ost;
ost << "MidiOutCore::getPortName: the 'portNumber' argument (" << portNumber << ") is invalid.";
errorString_ = ost.str();
error( RtMidiError::WARNING, errorString_ );
return stringName;
}
portRef = MIDIGetDestination( portNumber );
nameRef = ConnectedEndpointName(portRef);
CFStringGetCString( nameRef, name, sizeof(name), CFStringGetSystemEncoding());
CFRelease( nameRef );
return stringName = name;
}
void MidiOutCore :: openPort( unsigned int portNumber, const std::string portName )
{
if ( connected_ ) {
errorString_ = "MidiOutCore::openPort: a valid connection already exists!";
error( RtMidiError::WARNING, errorString_ );
CFRunLoopRunInMode( kCFRunLoopDefaultMode, 0, false );
unsigned int nDest = MIDIGetNumberOfDestinations();
if (nDest < 1) {
errorString_ = "MidiOutCore::openPort: no MIDI output destinations found!";
error( RtMidiError::NO_DEVICES_FOUND, errorString_ );
return;
std::ostringstream ost;
ost << "MidiOutCore::openPort: the 'portNumber' argument (" << portNumber << ") is invalid.";
errorString_ = ost.str();
error( RtMidiError::INVALID_PARAMETER, errorString_ );
return;
}
MIDIPortRef port;
CoreMidiData *data = static_cast<CoreMidiData *> (apiData_);
OSStatus result = MIDIOutputPortCreate( data->client,
CFStringCreateWithCString( NULL, portName.c_str(), kCFStringEncodingASCII ),
&port );
if ( result != noErr ) {
MIDIClientDispose( data->client );
errorString_ = "MidiOutCore::openPort: error creating OS-X MIDI output port.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
// Get the desired output port identifier.
MIDIEndpointRef destination = MIDIGetDestination( portNumber );
if ( destination == 0 ) {
MIDIPortDispose( port );
MIDIClientDispose( data->client );
errorString_ = "MidiOutCore::openPort: error getting MIDI output destination reference.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
// Save our api-specific connection information.
data->port = port;
data->destinationId = destination;
connected_ = true;
}
void MidiOutCore :: closePort( void )
{
if ( connected_ ) {
CoreMidiData *data = static_cast<CoreMidiData *> (apiData_);
MIDIPortDispose( data->port );
connected_ = false;
}
}
void MidiOutCore :: openVirtualPort( std::string portName )
{
CoreMidiData *data = static_cast<CoreMidiData *> (apiData_);
if ( data->endpoint ) {
errorString_ = "MidiOutCore::openVirtualPort: a virtual output port already exists!";
error( RtMidiError::WARNING, errorString_ );
return;
}
// Create a virtual MIDI output source.
MIDIEndpointRef endpoint;
OSStatus result = MIDISourceCreate( data->client,
CFStringCreateWithCString( NULL, portName.c_str(), kCFStringEncodingASCII ),
&endpoint );
if ( result != noErr ) {
errorString_ = "MidiOutCore::initialize: error creating OS-X virtual MIDI source.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
// Save our api-specific connection information.
data->endpoint = endpoint;
}
// Not necessary if we don't treat sysex messages any differently than
// normal messages ... see below.
//static void sysexCompletionProc( MIDISysexSendRequest *sreq )
//{
// free( sreq );
//}
void MidiOutCore :: sendMessage( std::vector<unsigned char> *message )
{
// We use the MIDISendSysex() function to asynchronously send sysex
// messages. Otherwise, we use a single CoreMidi MIDIPacket.
unsigned int nBytes = message->size();
if ( nBytes == 0 ) {
errorString_ = "MidiOutCore::sendMessage: no data in message argument!";
error( RtMidiError::WARNING, errorString_ );
return;
}
// unsigned int packetBytes, bytesLeft = nBytes;
// unsigned int messageIndex = 0;
MIDITimeStamp timeStamp = AudioGetCurrentHostTime();
CoreMidiData *data = static_cast<CoreMidiData *> (apiData_);
OSStatus result;
/*
// I don't think this code is necessary. We can send sysex
// messages through the normal mechanism. In addition, this avoids
// the problem of virtual ports not receiving sysex messages.
if ( message->at(0) == 0xF0 ) {
// Apple's fantastic API requires us to free the allocated data in
// the completion callback but trashes the pointer and size before
// we get a chance to free it!! This is a somewhat ugly hack
// submitted by ptarabbia that puts the sysex buffer data right at
// the end of the MIDISysexSendRequest structure. This solution
// does not require that we wait for a previous sysex buffer to be
// sent before sending a new one, which was the old way we did it.
MIDISysexSendRequest *newRequest = (MIDISysexSendRequest *) malloc(sizeof(struct MIDISysexSendRequest) + nBytes);
char * sysexBuffer = ((char *) newRequest) + sizeof(struct MIDISysexSendRequest);
// Copy data to buffer.
for ( unsigned int i=0; i<nBytes; ++i ) sysexBuffer[i] = message->at(i);
newRequest->destination = data->destinationId;
newRequest->data = (Byte *)sysexBuffer;
newRequest->bytesToSend = nBytes;
newRequest->complete = 0;
newRequest->completionProc = sysexCompletionProc;
newRequest->completionRefCon = newRequest;
result = MIDISendSysex(newRequest);
if ( result != noErr ) {
free( newRequest );
errorString_ = "MidiOutCore::sendMessage: error sending MIDI to virtual destinations.";
error( RtMidiError::WARNING, errorString_ );
return;
}
return;
errorString_ = "MidiOutCore::sendMessage: message format problem ... not sysex but > 3 bytes?";
error( RtMidiError::WARNING, errorString_ );
return;
*/
MIDIPacketList packetList;
MIDIPacket *packet = MIDIPacketListInit( &packetList );
packet = MIDIPacketListAdd( &packetList, sizeof(packetList), packet, timeStamp, nBytes, (const Byte *) &message->at( 0 ) );
if ( !packet ) {
errorString_ = "MidiOutCore::sendMessage: could not allocate packet list";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
// Send to any destinations that may have connected to us.
if ( data->endpoint ) {
result = MIDIReceived( data->endpoint, &packetList );
if ( result != noErr ) {
errorString_ = "MidiOutCore::sendMessage: error sending MIDI to virtual destinations.";
error( RtMidiError::WARNING, errorString_ );
}
}
// And send to an explicit destination port if we're connected.
if ( connected_ ) {
result = MIDISend( data->port, data->destinationId, &packetList );
if ( result != noErr ) {
errorString_ = "MidiOutCore::sendMessage: error sending MIDI message to port.";
error( RtMidiError::WARNING, errorString_ );
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
}
}
}
#endif // __MACOSX_CORE__
//*********************************************************************//
// API: LINUX ALSA SEQUENCER
//*********************************************************************//
// API information found at:
// - http://www.alsa-project.org/documentation.php#Library
#if defined(__LINUX_ALSA__)
// The ALSA Sequencer API is based on the use of a callback function for
// MIDI input.
//
// Thanks to Pedro Lopez-Cabanillas for help with the ALSA sequencer
// time stamps and other assorted fixes!!!
// If you don't need timestamping for incoming MIDI events, define the
// preprocessor definition AVOID_TIMESTAMPING to save resources
// associated with the ALSA sequencer queues.
#include <pthread.h>
#include <sys/time.h>
// ALSA header file.
#include <alsa/asoundlib.h>
// A structure to hold variables related to the ALSA API
// implementation.
struct AlsaMidiData {
snd_seq_t *seq;
unsigned int portNum;
int vport;
snd_seq_port_subscribe_t *subscription;
snd_midi_event_t *coder;
unsigned int bufferSize;
unsigned char *buffer;
pthread_t thread;
pthread_t dummy_thread_id;
unsigned long long lastTime;
int queue_id; // an input queue is needed to get timestamped events
int trigger_fds[2];
};
#define PORT_TYPE( pinfo, bits ) ((snd_seq_port_info_get_capability(pinfo) & (bits)) == (bits))
//*********************************************************************//
// API: LINUX ALSA
// Class Definitions: MidiInAlsa
//*********************************************************************//
static void *alsaMidiHandler( void *ptr )
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
{
MidiInApi::RtMidiInData *data = static_cast<MidiInApi::RtMidiInData *> (ptr);
AlsaMidiData *apiData = static_cast<AlsaMidiData *> (data->apiData);
long nBytes;
unsigned long long time, lastTime;
bool continueSysex = false;
bool doDecode = false;
MidiInApi::MidiMessage message;
int poll_fd_count;
struct pollfd *poll_fds;
snd_seq_event_t *ev;
int result;
apiData->bufferSize = 32;
result = snd_midi_event_new( 0, &apiData->coder );
if ( result < 0 ) {
data->doInput = false;
std::cerr << "\nMidiInAlsa::alsaMidiHandler: error initializing MIDI event parser!\n\n";
return 0;
}
unsigned char *buffer = (unsigned char *) malloc( apiData->bufferSize );
if ( buffer == NULL ) {
data->doInput = false;
snd_midi_event_free( apiData->coder );
apiData->coder = 0;
std::cerr << "\nMidiInAlsa::alsaMidiHandler: error initializing buffer memory!\n\n";
return 0;
}
snd_midi_event_init( apiData->coder );
snd_midi_event_no_status( apiData->coder, 1 ); // suppress running status messages
poll_fd_count = snd_seq_poll_descriptors_count( apiData->seq, POLLIN ) + 1;
poll_fds = (struct pollfd*)alloca( poll_fd_count * sizeof( struct pollfd ));
snd_seq_poll_descriptors( apiData->seq, poll_fds + 1, poll_fd_count - 1, POLLIN );
poll_fds[0].fd = apiData->trigger_fds[0];
poll_fds[0].events = POLLIN;
while ( data->doInput ) {
if ( snd_seq_event_input_pending( apiData->seq, 1 ) == 0 ) {
// No data pending
if ( poll( poll_fds, poll_fd_count, -1) >= 0 ) {
if ( poll_fds[0].revents & POLLIN ) {
bool dummy;
int res = read( poll_fds[0].fd, &dummy, sizeof(dummy) );
(void) res;
}
}
continue;
}
// If here, there should be data.
result = snd_seq_event_input( apiData->seq, &ev );
if ( result == -ENOSPC ) {
std::cerr << "\nMidiInAlsa::alsaMidiHandler: MIDI input buffer overrun!\n\n";
continue;
}
else if ( result <= 0 ) {
std::cerr << "\nMidiInAlsa::alsaMidiHandler: unknown MIDI input error!\n";
perror("System reports");
continue;
}
// This is a bit weird, but we now have to decode an ALSA MIDI
// event (back) into MIDI bytes. We'll ignore non-MIDI types.
if ( !continueSysex ) message.bytes.clear();
doDecode = false;
switch ( ev->type ) {
case SND_SEQ_EVENT_PORT_SUBSCRIBED:
#if defined(__RTMIDI_DEBUG__)
std::cout << "MidiInAlsa::alsaMidiHandler: port connection made!\n";
#endif
break;
case SND_SEQ_EVENT_PORT_UNSUBSCRIBED:
#if defined(__RTMIDI_DEBUG__)
std::cerr << "MidiInAlsa::alsaMidiHandler: port connection has closed!\n";
std::cout << "sender = " << (int) ev->data.connect.sender.client << ":"
<< (int) ev->data.connect.sender.port
<< ", dest = " << (int) ev->data.connect.dest.client << ":"
<< (int) ev->data.connect.dest.port
<< std::endl;
#endif
break;
case SND_SEQ_EVENT_QFRAME: // MIDI time code
if ( !( data->ignoreFlags & 0x02 ) ) doDecode = true;
break;
case SND_SEQ_EVENT_TICK: // 0xF9 ... MIDI timing tick
if ( !( data->ignoreFlags & 0x02 ) ) doDecode = true;
break;
case SND_SEQ_EVENT_CLOCK: // 0xF8 ... MIDI timing (clock) tick
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
if ( !( data->ignoreFlags & 0x02 ) ) doDecode = true;
break;
case SND_SEQ_EVENT_SENSING: // Active sensing
if ( !( data->ignoreFlags & 0x04 ) ) doDecode = true;
break;
case SND_SEQ_EVENT_SYSEX:
if ( (data->ignoreFlags & 0x01) ) break;
if ( ev->data.ext.len > apiData->bufferSize ) {
apiData->bufferSize = ev->data.ext.len;
free( buffer );
buffer = (unsigned char *) malloc( apiData->bufferSize );
if ( buffer == NULL ) {
data->doInput = false;
std::cerr << "\nMidiInAlsa::alsaMidiHandler: error resizing buffer memory!\n\n";
break;
}
}
default:
doDecode = true;
}
if ( doDecode ) {
nBytes = snd_midi_event_decode( apiData->coder, buffer, apiData->bufferSize, ev );
if ( nBytes > 0 ) {
// The ALSA sequencer has a maximum buffer size for MIDI sysex
// events of 256 bytes. If a device sends sysex messages larger
// than this, they are segmented into 256 byte chunks. So,
// we'll watch for this and concatenate sysex chunks into a
// single sysex message if necessary.
if ( !continueSysex )
message.bytes.assign( buffer, &buffer[nBytes] );
else
message.bytes.insert( message.bytes.end(), buffer, &buffer[nBytes] );
continueSysex = ( ( ev->type == SND_SEQ_EVENT_SYSEX ) && ( message.bytes.back() != 0xF7 ) );
if ( !continueSysex ) {
// Calculate the time stamp:
message.timeStamp = 0.0;
// Method 1: Use the system time.
//(void)gettimeofday(&tv, (struct timezone *)NULL);
//time = (tv.tv_sec * 1000000) + tv.tv_usec;
// Method 2: Use the ALSA sequencer event time data.
// (thanks to Pedro Lopez-Cabanillas!).
time = ( ev->time.time.tv_sec * 1000000 ) + ( ev->time.time.tv_nsec/1000 );
lastTime = time;
time -= apiData->lastTime;
apiData->lastTime = lastTime;
if ( data->firstMessage == true )
data->firstMessage = false;
else
message.timeStamp = time * 0.000001;
}
else {
#if defined(__RTMIDI_DEBUG__)
std::cerr << "\nMidiInAlsa::alsaMidiHandler: event parsing error or not a MIDI event!\n\n";
#endif
}
}
}
snd_seq_free_event( ev );
if ( message.bytes.size() == 0 || continueSysex ) continue;
if ( data->usingCallback ) {
RtMidiIn::RtMidiCallback callback = (RtMidiIn::RtMidiCallback) data->userCallback;
callback( message.timeStamp, &message.bytes, data->userData );
}
else {
// As long as we haven't reached our queue size limit, push the message.
if ( data->queue.size < data->queue.ringSize ) {
data->queue.ring[data->queue.back++] = message;
if ( data->queue.back == data->queue.ringSize )
data->queue.back = 0;
data->queue.size++;
}
else
std::cerr << "\nMidiInAlsa: message queue limit reached!!\n\n";
}
}
if ( buffer ) free( buffer );
snd_midi_event_free( apiData->coder );
apiData->coder = 0;
apiData->thread = apiData->dummy_thread_id;
return 0;
}
MidiInAlsa :: MidiInAlsa( const std::string clientName, unsigned int queueSizeLimit ) : MidiInApi( queueSizeLimit )
{
initialize( clientName );
}
MidiInAlsa :: ~MidiInAlsa()
{
// Close a connection if it exists.
closePort();
// Shutdown the input thread.
AlsaMidiData *data = static_cast<AlsaMidiData *> (apiData_);
if ( inputData_.doInput ) {
inputData_.doInput = false;
int res = write( data->trigger_fds[1], &inputData_.doInput, sizeof(inputData_.doInput) );
(void) res;
if ( !pthread_equal(data->thread, data->dummy_thread_id) )
pthread_join( data->thread, NULL );
}
// Cleanup.
close ( data->trigger_fds[0] );
close ( data->trigger_fds[1] );
if ( data->vport >= 0 ) snd_seq_delete_port( data->seq, data->vport );
#ifndef AVOID_TIMESTAMPING
snd_seq_free_queue( data->seq, data->queue_id );
#endif
snd_seq_close( data->seq );
delete data;
}
void MidiInAlsa :: initialize( const std::string& clientName )
{
// Set up the ALSA sequencer client.
snd_seq_t *seq;
int result = snd_seq_open(&seq, "default", SND_SEQ_OPEN_DUPLEX, SND_SEQ_NONBLOCK);
if ( result < 0 ) {
errorString_ = "MidiInAlsa::initialize: error creating ALSA sequencer client object.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
// Set client name.
snd_seq_set_client_name( seq, clientName.c_str() );
// Save our api-specific connection information.
AlsaMidiData *data = (AlsaMidiData *) new AlsaMidiData;
data->seq = seq;
data->portNum = -1;
data->vport = -1;
data->subscription = 0;
data->dummy_thread_id = pthread_self();
data->thread = data->dummy_thread_id;
data->trigger_fds[0] = -1;
data->trigger_fds[1] = -1;
apiData_ = (void *) data;
inputData_.apiData = (void *) data;
if ( pipe(data->trigger_fds) == -1 ) {
errorString_ = "MidiInAlsa::initialize: error creating pipe objects.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
data->queue_id = snd_seq_alloc_named_queue(seq, "RtMidi Queue");
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
// Set arbitrary tempo (mm=100) and resolution (240)
snd_seq_queue_tempo_t *qtempo;
snd_seq_queue_tempo_alloca(&qtempo);
snd_seq_queue_tempo_set_tempo(qtempo, 600000);
snd_seq_queue_tempo_set_ppq(qtempo, 240);
snd_seq_set_queue_tempo(data->seq, data->queue_id, qtempo);
snd_seq_drain_output(data->seq);
#endif
}
// This function is used to count or get the pinfo structure for a given port number.
unsigned int portInfo( snd_seq_t *seq, snd_seq_port_info_t *pinfo, unsigned int type, int portNumber )
{
snd_seq_client_info_t *cinfo;
int client;
int count = 0;
snd_seq_client_info_alloca( &cinfo );
snd_seq_client_info_set_client( cinfo, -1 );
while ( snd_seq_query_next_client( seq, cinfo ) >= 0 ) {
client = snd_seq_client_info_get_client( cinfo );
if ( client == 0 ) continue;
// Reset query info
snd_seq_port_info_set_client( pinfo, client );
snd_seq_port_info_set_port( pinfo, -1 );
while ( snd_seq_query_next_port( seq, pinfo ) >= 0 ) {
unsigned int atyp = snd_seq_port_info_get_type( pinfo );
if ( ( atyp & SND_SEQ_PORT_TYPE_MIDI_GENERIC ) == 0 ) continue;
unsigned int caps = snd_seq_port_info_get_capability( pinfo );
if ( ( caps & type ) != type ) continue;
if ( count == portNumber ) return 1;
++count;
}
}
// If a negative portNumber was used, return the port count.
if ( portNumber < 0 ) return count;
return 0;
}
unsigned int MidiInAlsa :: getPortCount()
{
snd_seq_port_info_t *pinfo;
snd_seq_port_info_alloca( &pinfo );
AlsaMidiData *data = static_cast<AlsaMidiData *> (apiData_);
return portInfo( data->seq, pinfo, SND_SEQ_PORT_CAP_READ|SND_SEQ_PORT_CAP_SUBS_READ, -1 );
}
std::string MidiInAlsa :: getPortName( unsigned int portNumber )
{
snd_seq_client_info_t *cinfo;
snd_seq_port_info_t *pinfo;
snd_seq_client_info_alloca( &cinfo );
snd_seq_port_info_alloca( &pinfo );
std::string stringName;
AlsaMidiData *data = static_cast<AlsaMidiData *> (apiData_);
if ( portInfo( data->seq, pinfo, SND_SEQ_PORT_CAP_READ|SND_SEQ_PORT_CAP_SUBS_READ, (int) portNumber ) ) {
int cnum = snd_seq_port_info_get_client( pinfo );
snd_seq_get_any_client_info( data->seq, cnum, cinfo );
std::ostringstream os;
os << snd_seq_client_info_get_name( cinfo );
os << " "; // These lines added to make sure devices are listed
os << snd_seq_port_info_get_client( pinfo ); // with full portnames added to ensure individual device names
os << ":";
os << snd_seq_port_info_get_port( pinfo );
stringName = os.str();
return stringName;
}
// If we get here, we didn't find a match.
errorString_ = "MidiInAlsa::getPortName: error looking for port name!";
error( RtMidiError::WARNING, errorString_ );
return stringName;
}
void MidiInAlsa :: openPort( unsigned int portNumber, const std::string portName )
{
if ( connected_ ) {
errorString_ = "MidiInAlsa::openPort: a valid connection already exists!";
error( RtMidiError::WARNING, errorString_ );
if ( nSrc < 1 ) {
error( RtMidiError::NO_DEVICES_FOUND, errorString_ );
return;
snd_seq_port_info_t *src_pinfo;
snd_seq_port_info_alloca( &src_pinfo );
if ( portInfo( data->seq, src_pinfo, SND_SEQ_PORT_CAP_READ|SND_SEQ_PORT_CAP_SUBS_READ, (int) portNumber ) == 0 ) {
std::ostringstream ost;
ost << "MidiInAlsa::openPort: the 'portNumber' argument (" << portNumber << ") is invalid.";
errorString_ = ost.str();
error( RtMidiError::INVALID_PARAMETER, errorString_ );
return;
sender.client = snd_seq_port_info_get_client( src_pinfo );
sender.port = snd_seq_port_info_get_port( src_pinfo );
snd_seq_port_info_t *pinfo;
snd_seq_port_info_alloca( &pinfo );
if ( data->vport < 0 ) {
snd_seq_port_info_set_client( pinfo, 0 );
snd_seq_port_info_set_port( pinfo, 0 );
snd_seq_port_info_set_capability( pinfo,
SND_SEQ_PORT_CAP_WRITE |
SND_SEQ_PORT_CAP_SUBS_WRITE );
snd_seq_port_info_set_type( pinfo,
SND_SEQ_PORT_TYPE_MIDI_GENERIC |
SND_SEQ_PORT_TYPE_APPLICATION );
snd_seq_port_info_set_midi_channels(pinfo, 16);
#ifndef AVOID_TIMESTAMPING
snd_seq_port_info_set_timestamping(pinfo, 1);
snd_seq_port_info_set_timestamp_real(pinfo, 1);
snd_seq_port_info_set_timestamp_queue(pinfo, data->queue_id);
#endif
snd_seq_port_info_set_name(pinfo, portName.c_str() );
data->vport = snd_seq_create_port(data->seq, pinfo);
if ( data->vport < 0 ) {
errorString_ = "MidiInAlsa::openPort: ALSA error creating input port.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
data->vport = snd_seq_port_info_get_port(pinfo);
receiver.client = snd_seq_port_info_get_client( pinfo );
receiver.port = data->vport;
if ( !data->subscription ) {
// Make subscription
if (snd_seq_port_subscribe_malloc( &data->subscription ) < 0) {
errorString_ = "MidiInAlsa::openPort: ALSA error allocation port subscription.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
snd_seq_port_subscribe_set_sender(data->subscription, &sender);
snd_seq_port_subscribe_set_dest(data->subscription, &receiver);
if ( snd_seq_subscribe_port(data->seq, data->subscription) ) {
snd_seq_port_subscribe_free( data->subscription );
data->subscription = 0;
errorString_ = "MidiInAlsa::openPort: ALSA error making port connection.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
}
}
if ( inputData_.doInput == false ) {
// Start the input queue
#ifndef AVOID_TIMESTAMPING
snd_seq_start_queue( data->seq, data->queue_id, NULL );
snd_seq_drain_output( data->seq );
#endif
// Start our MIDI input thread.
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);
inputData_.doInput = true;
int err = pthread_create(&data->thread, &attr, alsaMidiHandler, &inputData_);
pthread_attr_destroy(&attr);
if ( err ) {
snd_seq_unsubscribe_port( data->seq, data->subscription );
snd_seq_port_subscribe_free( data->subscription );
data->subscription = 0;
inputData_.doInput = false;
errorString_ = "MidiInAlsa::openPort: error starting MIDI input thread!";
error( RtMidiError::THREAD_ERROR, errorString_ );
return;
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
}
}
connected_ = true;
}
void MidiInAlsa :: openVirtualPort( std::string portName )
{
AlsaMidiData *data = static_cast<AlsaMidiData *> (apiData_);
if ( data->vport < 0 ) {
snd_seq_port_info_t *pinfo;
snd_seq_port_info_alloca( &pinfo );
snd_seq_port_info_set_capability( pinfo,
SND_SEQ_PORT_CAP_WRITE |
SND_SEQ_PORT_CAP_SUBS_WRITE );
snd_seq_port_info_set_type( pinfo,
SND_SEQ_PORT_TYPE_MIDI_GENERIC |
SND_SEQ_PORT_TYPE_APPLICATION );
snd_seq_port_info_set_midi_channels(pinfo, 16);
#ifndef AVOID_TIMESTAMPING
snd_seq_port_info_set_timestamping(pinfo, 1);
snd_seq_port_info_set_timestamp_real(pinfo, 1);
snd_seq_port_info_set_timestamp_queue(pinfo, data->queue_id);
#endif
snd_seq_port_info_set_name(pinfo, portName.c_str());
data->vport = snd_seq_create_port(data->seq, pinfo);
if ( data->vport < 0 ) {
errorString_ = "MidiInAlsa::openVirtualPort: ALSA error creating virtual port.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
data->vport = snd_seq_port_info_get_port(pinfo);
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
}
if ( inputData_.doInput == false ) {
// Wait for old thread to stop, if still running
if ( !pthread_equal(data->thread, data->dummy_thread_id) )
pthread_join( data->thread, NULL );
// Start the input queue
#ifndef AVOID_TIMESTAMPING
snd_seq_start_queue( data->seq, data->queue_id, NULL );
snd_seq_drain_output( data->seq );
#endif
// Start our MIDI input thread.
pthread_attr_t attr;
pthread_attr_init(&attr);
pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_JOINABLE);
pthread_attr_setschedpolicy(&attr, SCHED_OTHER);
inputData_.doInput = true;
int err = pthread_create(&data->thread, &attr, alsaMidiHandler, &inputData_);
pthread_attr_destroy(&attr);
if ( err ) {
if ( data->subscription ) {
snd_seq_unsubscribe_port( data->seq, data->subscription );
snd_seq_port_subscribe_free( data->subscription );
data->subscription = 0;
}
inputData_.doInput = false;
errorString_ = "MidiInAlsa::openPort: error starting MIDI input thread!";
error( RtMidiError::THREAD_ERROR, errorString_ );
return;
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
}
}
}
void MidiInAlsa :: closePort( void )
{
AlsaMidiData *data = static_cast<AlsaMidiData *> (apiData_);
if ( connected_ ) {
if ( data->subscription ) {
snd_seq_unsubscribe_port( data->seq, data->subscription );
snd_seq_port_subscribe_free( data->subscription );
data->subscription = 0;
}
// Stop the input queue
#ifndef AVOID_TIMESTAMPING
snd_seq_stop_queue( data->seq, data->queue_id, NULL );
snd_seq_drain_output( data->seq );
#endif
connected_ = false;
}
// Stop thread to avoid triggering the callback, while the port is intended to be closed
if ( inputData_.doInput ) {
inputData_.doInput = false;
int res = write( data->trigger_fds[1], &inputData_.doInput, sizeof(inputData_.doInput) );
(void) res;
if ( !pthread_equal(data->thread, data->dummy_thread_id) )
pthread_join( data->thread, NULL );
}
}
//*********************************************************************//
// API: LINUX ALSA
// Class Definitions: MidiOutAlsa
//*********************************************************************//
MidiOutAlsa :: MidiOutAlsa( const std::string clientName ) : MidiOutApi()
{
initialize( clientName );
}
MidiOutAlsa :: ~MidiOutAlsa()
{
// Close a connection if it exists.
closePort();
// Cleanup.
AlsaMidiData *data = static_cast<AlsaMidiData *> (apiData_);
if ( data->vport >= 0 ) snd_seq_delete_port( data->seq, data->vport );
if ( data->coder ) snd_midi_event_free( data->coder );
if ( data->buffer ) free( data->buffer );
snd_seq_close( data->seq );
delete data;
}
void MidiOutAlsa :: initialize( const std::string& clientName )
{
// Set up the ALSA sequencer client.
snd_seq_t *seq;
int result1 = snd_seq_open( &seq, "default", SND_SEQ_OPEN_OUTPUT, SND_SEQ_NONBLOCK );
if ( result1 < 0 ) {
errorString_ = "MidiOutAlsa::initialize: error creating ALSA sequencer client object.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
// Set client name.
snd_seq_set_client_name( seq, clientName.c_str() );
// Save our api-specific connection information.
AlsaMidiData *data = (AlsaMidiData *) new AlsaMidiData;
data->seq = seq;
data->portNum = -1;
data->vport = -1;
data->bufferSize = 32;
data->coder = 0;
data->buffer = 0;
int result = snd_midi_event_new( data->bufferSize, &data->coder );
if ( result < 0 ) {
delete data;
errorString_ = "MidiOutAlsa::initialize: error initializing MIDI event parser!\n\n";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
data->buffer = (unsigned char *) malloc( data->bufferSize );
if ( data->buffer == NULL ) {
delete data;
errorString_ = "MidiOutAlsa::initialize: error allocating buffer memory!\n\n";
error( RtMidiError::MEMORY_ERROR, errorString_ );
return;
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
}
snd_midi_event_init( data->coder );
apiData_ = (void *) data;
}
unsigned int MidiOutAlsa :: getPortCount()
{
snd_seq_port_info_t *pinfo;
snd_seq_port_info_alloca( &pinfo );
AlsaMidiData *data = static_cast<AlsaMidiData *> (apiData_);
return portInfo( data->seq, pinfo, SND_SEQ_PORT_CAP_WRITE|SND_SEQ_PORT_CAP_SUBS_WRITE, -1 );
}
std::string MidiOutAlsa :: getPortName( unsigned int portNumber )
{
snd_seq_client_info_t *cinfo;
snd_seq_port_info_t *pinfo;
snd_seq_client_info_alloca( &cinfo );
snd_seq_port_info_alloca( &pinfo );
std::string stringName;
AlsaMidiData *data = static_cast<AlsaMidiData *> (apiData_);
if ( portInfo( data->seq, pinfo, SND_SEQ_PORT_CAP_WRITE|SND_SEQ_PORT_CAP_SUBS_WRITE, (int) portNumber ) ) {
int cnum = snd_seq_port_info_get_client(pinfo);
snd_seq_get_any_client_info( data->seq, cnum, cinfo );
std::ostringstream os;
os << snd_seq_client_info_get_name(cinfo);
os << " "; // These lines added to make sure devices are listed
os << snd_seq_port_info_get_client( pinfo ); // with full portnames added to ensure individual device names
os << ":";
os << snd_seq_port_info_get_port(pinfo);
stringName = os.str();
return stringName;
}
// If we get here, we didn't find a match.
errorString_ = "MidiOutAlsa::getPortName: error looking for port name!";
error( RtMidiError::WARNING, errorString_ );
return stringName;
}
void MidiOutAlsa :: openPort( unsigned int portNumber, const std::string portName )
{
if ( connected_ ) {
errorString_ = "MidiOutAlsa::openPort: a valid connection already exists!";
error( RtMidiError::WARNING, errorString_ );
return;
}
unsigned int nSrc = this->getPortCount();
if (nSrc < 1) {
errorString_ = "MidiOutAlsa::openPort: no MIDI output sources found!";
error( RtMidiError::NO_DEVICES_FOUND, errorString_ );
return;
}
snd_seq_port_info_t *pinfo;
snd_seq_port_info_alloca( &pinfo );
AlsaMidiData *data = static_cast<AlsaMidiData *> (apiData_);
if ( portInfo( data->seq, pinfo, SND_SEQ_PORT_CAP_WRITE|SND_SEQ_PORT_CAP_SUBS_WRITE, (int) portNumber ) == 0 ) {
std::ostringstream ost;
ost << "MidiOutAlsa::openPort: the 'portNumber' argument (" << portNumber << ") is invalid.";
errorString_ = ost.str();
error( RtMidiError::INVALID_PARAMETER, errorString_ );
return;
}
snd_seq_addr_t sender, receiver;
receiver.client = snd_seq_port_info_get_client( pinfo );
receiver.port = snd_seq_port_info_get_port( pinfo );
sender.client = snd_seq_client_id( data->seq );
if ( data->vport < 0 ) {
data->vport = snd_seq_create_simple_port( data->seq, portName.c_str(),
SND_SEQ_PORT_CAP_READ|SND_SEQ_PORT_CAP_SUBS_READ,
SND_SEQ_PORT_TYPE_MIDI_GENERIC|SND_SEQ_PORT_TYPE_APPLICATION );
if ( data->vport < 0 ) {
errorString_ = "MidiOutAlsa::openPort: ALSA error creating output port.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
}
sender.port = data->vport;
// Make subscription
if (snd_seq_port_subscribe_malloc( &data->subscription ) < 0) {
snd_seq_port_subscribe_free( data->subscription );
errorString_ = "MidiOutAlsa::openPort: error allocating port subscription.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
snd_seq_port_subscribe_set_sender(data->subscription, &sender);
snd_seq_port_subscribe_set_dest(data->subscription, &receiver);
snd_seq_port_subscribe_set_time_update(data->subscription, 1);
snd_seq_port_subscribe_set_time_real(data->subscription, 1);
if ( snd_seq_subscribe_port(data->seq, data->subscription) ) {
snd_seq_port_subscribe_free( data->subscription );
errorString_ = "MidiOutAlsa::openPort: ALSA error making port connection.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
}
connected_ = true;
}
void MidiOutAlsa :: closePort( void )
{
if ( connected_ ) {
AlsaMidiData *data = static_cast<AlsaMidiData *> (apiData_);
snd_seq_unsubscribe_port( data->seq, data->subscription );
snd_seq_port_subscribe_free( data->subscription );
connected_ = false;
}
}
void MidiOutAlsa :: openVirtualPort( std::string portName )
{
AlsaMidiData *data = static_cast<AlsaMidiData *> (apiData_);
if ( data->vport < 0 ) {
data->vport = snd_seq_create_simple_port( data->seq, portName.c_str(),
SND_SEQ_PORT_CAP_READ|SND_SEQ_PORT_CAP_SUBS_READ,
SND_SEQ_PORT_TYPE_MIDI_GENERIC|SND_SEQ_PORT_TYPE_APPLICATION );
if ( data->vport < 0 ) {
errorString_ = "MidiOutAlsa::openVirtualPort: ALSA error creating virtual port.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
}
}
}
void MidiOutAlsa :: sendMessage( std::vector<unsigned char> *message )
{
int result;
AlsaMidiData *data = static_cast<AlsaMidiData *> (apiData_);
unsigned int nBytes = message->size();
if ( nBytes > data->bufferSize ) {
data->bufferSize = nBytes;
result = snd_midi_event_resize_buffer ( data->coder, nBytes);
if ( result != 0 ) {
errorString_ = "MidiOutAlsa::sendMessage: ALSA error resizing MIDI event buffer.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
free (data->buffer);
data->buffer = (unsigned char *) malloc( data->bufferSize );
if ( data->buffer == NULL ) {
errorString_ = "MidiOutAlsa::initialize: error allocating buffer memory!\n\n";
error( RtMidiError::MEMORY_ERROR, errorString_ );
return;
}
}
snd_seq_event_t ev;
snd_seq_ev_clear(&ev);
snd_seq_ev_set_source(&ev, data->vport);
snd_seq_ev_set_subs(&ev);
snd_seq_ev_set_direct(&ev);
for ( unsigned int i=0; i<nBytes; ++i ) data->buffer[i] = message->at(i);
result = snd_midi_event_encode( data->coder, data->buffer, (long)nBytes, &ev );
if ( result < (int)nBytes ) {
errorString_ = "MidiOutAlsa::sendMessage: event parsing error!";
error( RtMidiError::WARNING, errorString_ );
return;
}
// Send the event.
result = snd_seq_event_output(data->seq, &ev);
if ( result < 0 ) {
errorString_ = "MidiOutAlsa::sendMessage: error sending MIDI message to port.";
error( RtMidiError::WARNING, errorString_ );
return;
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
}
snd_seq_drain_output(data->seq);
}
#endif // __LINUX_ALSA__
//*********************************************************************//
// API: Windows Multimedia Library (MM)
//*********************************************************************//
// API information deciphered from:
// - http://msdn.microsoft.com/library/default.asp?url=/library/en-us/multimed/htm/_win32_midi_reference.asp
// Thanks to Jean-Baptiste Berruchon for the sysex code.
#if defined(__WINDOWS_MM__)
// The Windows MM API is based on the use of a callback function for
// MIDI input. We convert the system specific time stamps to delta
// time values.
// Windows MM MIDI header files.
#include <windows.h>
#include <mmsystem.h>
#define RT_SYSEX_BUFFER_SIZE 1024
#define RT_SYSEX_BUFFER_COUNT 4
// A structure to hold variables related to the CoreMIDI API
// implementation.
struct WinMidiData {
HMIDIIN inHandle; // Handle to Midi Input Device
HMIDIOUT outHandle; // Handle to Midi Output Device
DWORD lastTime;
MidiInApi::MidiMessage message;
LPMIDIHDR sysexBuffer[RT_SYSEX_BUFFER_COUNT];
CRITICAL_SECTION _mutex; // [Patrice] see https://groups.google.com/forum/#!topic/mididev/6OUjHutMpEo
};
//*********************************************************************//
// API: Windows MM
// Class Definitions: MidiInWinMM
//*********************************************************************//
static void CALLBACK midiInputCallback( HMIDIIN /*hmin*/,
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
UINT inputStatus,
DWORD_PTR instancePtr,
DWORD_PTR midiMessage,
DWORD timestamp )
{
if ( inputStatus != MIM_DATA && inputStatus != MIM_LONGDATA && inputStatus != MIM_LONGERROR ) return;
//MidiInApi::RtMidiInData *data = static_cast<MidiInApi::RtMidiInData *> (instancePtr);
MidiInApi::RtMidiInData *data = (MidiInApi::RtMidiInData *)instancePtr;
WinMidiData *apiData = static_cast<WinMidiData *> (data->apiData);
// Calculate time stamp.
if ( data->firstMessage == true ) {
apiData->message.timeStamp = 0.0;
data->firstMessage = false;
}
else apiData->message.timeStamp = (double) ( timestamp - apiData->lastTime ) * 0.001;
apiData->lastTime = timestamp;
if ( inputStatus == MIM_DATA ) { // Channel or system message
// Make sure the first byte is a status byte.
unsigned char status = (unsigned char) (midiMessage & 0x000000FF);
if ( !(status & 0x80) ) return;
// Determine the number of bytes in the MIDI message.
unsigned short nBytes = 1;
if ( status < 0xC0 ) nBytes = 3;
else if ( status < 0xE0 ) nBytes = 2;
else if ( status < 0xF0 ) nBytes = 3;
else if ( status == 0xF1 ) {
if ( data->ignoreFlags & 0x02 ) return;
else nBytes = 2;
}
else if ( status == 0xF2 ) nBytes = 3;
else if ( status == 0xF3 ) nBytes = 2;
else if ( status == 0xF8 && (data->ignoreFlags & 0x02) ) {
// A MIDI timing tick message and we're ignoring it.
return;
}
else if ( status == 0xFE && (data->ignoreFlags & 0x04) ) {
// A MIDI active sensing message and we're ignoring it.
return;
}
// Copy bytes to our MIDI message.
unsigned char *ptr = (unsigned char *) &midiMessage;
for ( int i=0; i<nBytes; ++i ) apiData->message.bytes.push_back( *ptr++ );
}
else { // Sysex message ( MIM_LONGDATA or MIM_LONGERROR )
MIDIHDR *sysex = ( MIDIHDR *) midiMessage;
if ( !( data->ignoreFlags & 0x01 ) && inputStatus != MIM_LONGERROR ) {
// Sysex message and we're not ignoring it
for ( int i=0; i<(int)sysex->dwBytesRecorded; ++i )
apiData->message.bytes.push_back( sysex->lpData[i] );
}
// The WinMM API requires that the sysex buffer be requeued after
// input of each sysex message. Even if we are ignoring sysex
// messages, we still need to requeue the buffer in case the user
// decides to not ignore sysex messages in the future. However,
// it seems that WinMM calls this function with an empty sysex
// buffer when an application closes and in this case, we should
// avoid requeueing it, else the computer suddenly reboots after
// one or two minutes.
if ( apiData->sysexBuffer[sysex->dwUser]->dwBytesRecorded > 0 ) {
//if ( sysex->dwBytesRecorded > 0 ) {
EnterCriticalSection( &(apiData->_mutex) );
MMRESULT result = midiInAddBuffer( apiData->inHandle, apiData->sysexBuffer[sysex->dwUser], sizeof(MIDIHDR) );
LeaveCriticalSection( &(apiData->_mutex) );
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
if ( result != MMSYSERR_NOERROR )
std::cerr << "\nRtMidiIn::midiInputCallback: error sending sysex to Midi device!!\n\n";
if ( data->ignoreFlags & 0x01 ) return;
}
else return;
}
if ( data->usingCallback ) {
RtMidiIn::RtMidiCallback callback = (RtMidiIn::RtMidiCallback) data->userCallback;
callback( apiData->message.timeStamp, &apiData->message.bytes, data->userData );
}
else {
// As long as we haven't reached our queue size limit, push the message.
if ( data->queue.size < data->queue.ringSize ) {
data->queue.ring[data->queue.back++] = apiData->message;
if ( data->queue.back == data->queue.ringSize )
data->queue.back = 0;
data->queue.size++;
}
else
std::cerr << "\nRtMidiIn: message queue limit reached!!\n\n";
}
// Clear the vector for the next input message.
apiData->message.bytes.clear();
}
MidiInWinMM :: MidiInWinMM( const std::string clientName, unsigned int queueSizeLimit ) : MidiInApi( queueSizeLimit )
{
initialize( clientName );
}
MidiInWinMM :: ~MidiInWinMM()
{
// Close a connection if it exists.
closePort();
WinMidiData *data = static_cast<WinMidiData *> (apiData_);
DeleteCriticalSection( &(data->_mutex) );
// Cleanup.
delete data;
}
void MidiInWinMM :: initialize( const std::string& /*clientName*/ )
{
// We'll issue a warning here if no devices are available but not
// throw an error since the user can plugin something later.
unsigned int nDevices = midiInGetNumDevs();
if ( nDevices == 0 ) {
errorString_ = "MidiInWinMM::initialize: no MIDI input devices currently available.";
error( RtMidiError::WARNING, errorString_ );
}
// Save our api-specific connection information.
WinMidiData *data = (WinMidiData *) new WinMidiData;
apiData_ = (void *) data;
inputData_.apiData = (void *) data;
data->message.bytes.clear(); // needs to be empty for first input message
if ( !InitializeCriticalSectionAndSpinCount(&(data->_mutex), 0x00000400) ) {
errorString_ = "MidiInWinMM::initialize: InitializeCriticalSectionAndSpinCount failed.";
error( RtMidiError::WARNING, errorString_ );
}
}
void MidiInWinMM :: openPort( unsigned int portNumber, const std::string /*portName*/ )
{
if ( connected_ ) {
errorString_ = "MidiInWinMM::openPort: a valid connection already exists!";
error( RtMidiError::WARNING, errorString_ );
return;
}
unsigned int nDevices = midiInGetNumDevs();
if (nDevices == 0) {
errorString_ = "MidiInWinMM::openPort: no MIDI input sources found!";
error( RtMidiError::NO_DEVICES_FOUND, errorString_ );
return;
std::ostringstream ost;
ost << "MidiInWinMM::openPort: the 'portNumber' argument (" << portNumber << ") is invalid.";
errorString_ = ost.str();
error( RtMidiError::INVALID_PARAMETER, errorString_ );
return;
}
WinMidiData *data = static_cast<WinMidiData *> (apiData_);
MMRESULT result = midiInOpen( &data->inHandle,
portNumber,
(DWORD_PTR)&midiInputCallback,
(DWORD_PTR)&inputData_,
CALLBACK_FUNCTION );
if ( result != MMSYSERR_NOERROR ) {
errorString_ = "MidiInWinMM::openPort: error creating Windows MM MIDI input port.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
// Allocate and init the sysex buffers.
for ( int i=0; i<RT_SYSEX_BUFFER_COUNT; ++i ) {
data->sysexBuffer[i] = (MIDIHDR*) new char[ sizeof(MIDIHDR) ];
data->sysexBuffer[i]->lpData = new char[ RT_SYSEX_BUFFER_SIZE ];
data->sysexBuffer[i]->dwBufferLength = RT_SYSEX_BUFFER_SIZE;
data->sysexBuffer[i]->dwUser = i; // We use the dwUser parameter as buffer indicator
data->sysexBuffer[i]->dwFlags = 0;
result = midiInPrepareHeader( data->inHandle, data->sysexBuffer[i], sizeof(MIDIHDR) );
if ( result != MMSYSERR_NOERROR ) {
midiInClose( data->inHandle );
errorString_ = "MidiInWinMM::openPort: error starting Windows MM MIDI input port (PrepareHeader).";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
// Register the buffer.
result = midiInAddBuffer( data->inHandle, data->sysexBuffer[i], sizeof(MIDIHDR) );
if ( result != MMSYSERR_NOERROR ) {
midiInClose( data->inHandle );
errorString_ = "MidiInWinMM::openPort: error starting Windows MM MIDI input port (AddBuffer).";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
}
result = midiInStart( data->inHandle );
if ( result != MMSYSERR_NOERROR ) {
midiInClose( data->inHandle );
errorString_ = "MidiInWinMM::openPort: error starting Windows MM MIDI input port.";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
void MidiInWinMM :: openVirtualPort( std::string /*portName*/ )
{
// This function cannot be implemented for the Windows MM MIDI API.
errorString_ = "MidiInWinMM::openVirtualPort: cannot be implemented in Windows MM MIDI API!";
error( RtMidiError::WARNING, errorString_ );
}
void MidiInWinMM :: closePort( void )
{
if ( connected_ ) {
WinMidiData *data = static_cast<WinMidiData *> (apiData_);
EnterCriticalSection( &(data->_mutex) );
midiInReset( data->inHandle );
midiInStop( data->inHandle );
for ( int i=0; i<RT_SYSEX_BUFFER_COUNT; ++i ) {
int result = midiInUnprepareHeader(data->inHandle, data->sysexBuffer[i], sizeof(MIDIHDR));
delete [] data->sysexBuffer[i]->lpData;
delete [] data->sysexBuffer[i];
if ( result != MMSYSERR_NOERROR ) {
midiInClose( data->inHandle );
errorString_ = "MidiInWinMM::openPort: error closing Windows MM MIDI input port (midiInUnprepareHeader).";
error( RtMidiError::DRIVER_ERROR, errorString_ );
return;
}
}
midiInClose( data->inHandle );
connected_ = false;
LeaveCriticalSection( &(data->_mutex) );
}
}
unsigned int MidiInWinMM :: getPortCount()
{
return midiInGetNumDevs();
}
std::string MidiInWinMM :: getPortName( unsigned int portNumber )
{
std::string stringName;
unsigned int nDevices = midiInGetNumDevs();
if ( portNumber >= nDevices ) {
std::ostringstream ost;
ost << "MidiInWinMM::getPortName: the 'portNumber' argument (" << portNumber << ") is invalid.";
errorString_ = ost.str();
error( RtMidiError::WARNING, errorString_ );
Loading
Loading full blame...