-
Rafaël Blais Masson authoredRafaël Blais Masson authored
Geocoder¶ ↑
Geocoder is a complete geocoding solution for Ruby. With Rails it adds geocoding (by street or IP address), reverse geocoding (find street address based on given coordinates), and distance queries. It’s as simple as calling geocode
on your objects, and then using a scope like Venue.near("Billings, MT")
.
Compatibility¶ ↑
-
Supports multiple Ruby versions: Ruby 1.8.7, 1.9.2, and JRuby.
-
Supports multiple databases: MySQL, PostgreSQL, SQLite, and MongoDB (1.7.0 and higher).
-
Supports Rails 3. If you need to use it with Rails 2 please see the
rails2
branch (no longer maintained, limited feature set). -
Works very well outside of Rails, you just need to install either the
json
(for MRI) orjson_pure
(for JRuby) gem.
Install¶ ↑
As a Gem¶ ↑
Add to your Gemfile:
gem "geocoder"
and run at the command prompt:
bundle install
Or As a Plugin¶ ↑
At the command prompt:
rails plugin install git://github.com/alexreisner/geocoder.git
Configure Object Geocoding¶ ↑
In the below, note that addresses may be street or IP addresses.
ActiveRecord¶ ↑
Your model must have two attributes (database columns) for storing latitude and longitude coordinates. By default they should be called latitude
and longitude
but this can be changed (see “More on Configuration” below):
rails generate migration AddLatitudeAndLongitudeToModel latitude:float longitude:float rake db:migrate
For reverse geocoding your model must provide a method that returns an address. This can be a single attribute, but it can also be a method that returns a string assembled from different attributes (eg: city
, state
, and country
).
Next, your model must tell Geocoder which method returns your object’s geocodable address:
geocoded_by :full_street_address # can also be an IP address after_validation :geocode # auto-fetch coordinates
For reverse geocoding, tell Geocoder which attributes store latitude and longitude:
reverse_geocoded_by :latitude, :longitude after_validation :reverse_geocode # auto-fetch address
Mongoid¶ ↑
First, your model must have an array field for storing coordinates:
field :coordinates, :type => Array
You may also want an address field, like this:
field :address
but if you store address components (city, state, country, etc) in separate fields you can instead define a method called address
that combines them into a single string which will be used to query the geocoding service.
Once your fields are defined, include the Geocoder::Model::Mongoid
module and then call geocoded_by
:
include Geocoder::Model::Mongoid geocoded_by :address # can also be an IP address after_validation :geocode # auto-fetch coordinates
Reverse geocoding is similar:
include Geocoder::Model::Mongoid reverse_geocoded_by :coordinates after_validation :reverse_geocode # auto-fetch address
Be sure to read Latitude/Longitude Order in the Notes on MongoDB section below on how to properly retrieve latitude/longitude coordinates from your objects.
MongoMapper¶ ↑
MongoMapper is very similar to Mongoid, just be sure to include Geocoder::Model::MongoMapper
.
Mongo Indices¶ ↑
By default, the methods geocoded_by
and reverse_geocoded_by
create a geospatial index. You can avoid index creation with the :skip_index option
, for example:
include Geocoder::Model::Mongoid geocoded_by :address, :skip_index => true
Bulk Geocoding¶ ↑
If you have just added geocoding to an existing application with a lot of objects you can use this Rake task to geocode them all:
rake geocode:all CLASS=YourModel
Geocoder will print warnings if you exceed the rate limit for your geocoding service.
Request Geocoding by IP Address¶ ↑
Geocoder adds a location
method to the standard Rack::Request
object so you can easily look up the location of any HTTP request by IP address. For example, in a Rails controller or a Sinatra app:
# returns Geocoder::Result object result = request.location
See “Advanced Geocoding” below for more information about Geocoder::Result objects.
Location-Aware Database Queries¶ ↑
To find objects by location, use the following scopes:
Venue.near('Omaha, NE, US', 20) # venues within 20 miles of Omaha Venue.near([40.71, 100.23], 20) # venues within 20 miles of a point Venue.geocoded # venues with coordinates Venue.not_geocoded # venues without coordinates
With geocoded objects you can do things like this:
obj.nearbys(30) # other objects within 30 miles obj.distance_from([40.714,-100.234]) # distance from arbitrary point to object obj.bearing_to("Paris, France") # direction from object to arbitrary point
Some utility methods are also available:
# look up coordinates of some location (like searching Google Maps) Geocoder.coordinates("25 Main St, Cooperstown, NY") => [42.700149, -74.922767] # distance (in miles) between Eiffel Tower and Empire State Building Geocoder::Calculations.distance_between([47.858205,2.294359], [40.748433,-73.985655]) => 3619.77359999382 # find the geographic center (aka center of gravity) of objects or points Geocoder::Calculations.geographic_center([city1, city2, [40.22,-73.99], city4]) => [35.14968, -90.048929]
Please see the code for more methods and detailed information about arguments (eg, working with kilometers).
Distance and Bearing¶ ↑
When you run a location-aware query the returned objects have two attributes added to them (only w/ ActiveRecord):
-
obj.distance
- number of miles from the search point to this object -
obj.bearing
- direction from the search point to this object
Results are automatically sorted by distance from the search point, closest to farthest. Bearing is given as a number of clockwise degrees from due north, for example:
-
0
- due north -
180
- due south -
90
- due east -
270
- due west -
230.1
- southwest -
359.9
- almost due north
You can convert these numbers to compass point names by using the utility method provided:
Geocoder::Calculations.compass_point(355) # => "N" Geocoder::Calculations.compass_point(45) # => "NE" Geocoder::Calculations.compass_point(208) # => "SW"
Note: when using SQLite distance
and bearing
values are provided for interface consistency only. They are not very accurate.
To calculate accurate distance and bearing with SQLite or MongoDB:
obj.distance_to([43.9,-98.6]) # distance from obj to point obj.bearing_to([43.9,-98.6]) # bearing from obj to point obj.bearing_from(obj2) # bearing from obj2 to obj
The bearing_from/to
methods take a single argument which can be: a [lat,lon]
array, a geocoded object, or a geocodable address (string). The distance_from/to
methods also take a units argument (:mi
or :km
).
More on Configuration¶ ↑
You are not stuck with using the latitude
and longitude
database column names (with ActiveRecord) or the coordinates
array (Mongo) for storing coordinates. For example:
geocoded_by :address, :latitude => :lat, :longitude => :lon # ActiveRecord geocoded_by :address, :coordinates => :coords # MongoDB
The address
method can return any string you’d use to search Google Maps. For example, any of the following are acceptable:
-
“714 Green St, Big Town, MO”
-
“Eiffel Tower, Paris, FR”
-
“Paris, TX, US”
If your model has street
, city
, state
, and country
attributes you might do something like this:
geocoded_by :address def address [street, city, state, country].compact.join(', ') end
For reverse geocoding you can also specify an alternate name attribute where the address will be stored, for example:
reverse_geocoded_by :latitude, :longitude, :address => :location # ActiveRecord reverse_geocoded_by :coordinates, :address => :loc # MongoDB
Advanced Geocoding¶ ↑
So far we have looked at shortcuts for assigning geocoding results to object attributes. However, if you need to do something fancy you can skip the auto-assignment by providing a block (takes the object to be geocoded and an array of Geocoder::Result
objects) in which you handle the parsed geocoding result any way you like, for example:
reverse_geocoded_by :latitude, :longitude do |obj,results| if geo = results.first obj.city = geo.city obj.zipcode = geo.postal_code obj.country = geo.country_code end end after_validation :reverse_geocode
Every Geocoder::Result
object, result
, provides the following data:
-
result.latitude
- float -
result.longitude
- float -
result.coordinates
- array of the above two -
result.address
- string -
result.city
- string -
result.state
- string -
result.state_code
- string -
result.postal_code
- string -
result.country
- string -
result.country_code
- string
If you’re familiar with the results returned by the geocoding service you’re using you can access even more data, but you’ll need to be familiar with the particular Geocoder::Result
object you’re using and the structure of your geocoding service’s responses. (See below for links to geocoding service documentation.)
Geocoding Services¶ ↑
By default Geocoder uses Google’s geocoding API to fetch coordinates and street addresses (FreeGeoIP is used for IP address info). However there are several other APIs supported, as well as a variety of settings. Please see the listing and comparison below for details on specific geocoding services (not all settings are supported by all services). Some common configuration options are:
# config/initializers/geocoder.rb Geocoder.configure do |config| # geocoding service (see below for supported options): config.lookup = :yahoo # to use an API key: config.api_key = "..." # geocoding service request timeout, in seconds (default 3): config.timeout = 5 # set default units to kilometers: config.units = :km # caching (see below for details): config.cache = Redis.new config.cache_prefix = "..." end
Please see lib/geocoder/configuration.rb for a complete list of configuration options.
Listing and Comparison¶ ↑
The following is a comparison of the supported geocoding APIs. The “Limitations” listed for each are a very brief and incomplete summary of some special limitations beyond basic data source attribution. Please read the official Terms of Service for a service before using it.
Google (:google
)¶ ↑
- API key
-
optional (required for Premier)
- Key signup
- Quota
-
2,500 requests/day, 100,000 with Google Maps API Premier
- Region
-
world
- SSL support
-
yes
- Languages
-
ar, eu, bg, bn, ca, cs, da, de, el, en, en-AU, en-GB, es, eu, fa, fi, fil, fr, gl, gu, hi, hr, hu, id, it, iw, ja, kn, ko, lt, lv, ml, mr, nl, no, pl, pt, pt-BR, pt-PT, ro, ru, sk, sl, sr, sv, tl, ta, te, th, tr, uk, vi, zh-CN, zh-TW (see spreadsheets.google.com/pub?key=p9pdwsai2hDMsLkXsoM05KQ&gid=1)
- Documentation
- Terms of Service
- Limitations
-
“You must not use or display the Content without a corresponding Google map, unless you are explicitly permitted to do so in the Maps APIs Documentation, or through written permission from Google.” “You must not pre-fetch, cache, or store any Content, except that you may store: (i) limited amounts of Content for the purpose of improving the performance of your Maps API Implementation…”
- Notes
-
To use Google Premier set
Geocoder::Configuration.lookup = :google_premier
andGeocoder::Configuration.api_key = [key, client, channel]
.
Yahoo (:yahoo
)¶ ↑
- API key
-
optional in development (required for production apps)
- Key signup
- Quota
-
50,000 requests/day, more available by special arrangement
- Region
-
world
- SSL support
-
no
- Languages
-
?
- Documentation
- Terms of Service
-
info.yahoo.com/legal/us/yahoo/maps/mapsapi/mapsapi-2141.html
- Limitations
-
“YOU SHALL NOT… (viii) store or allow end users to store map imagery, map data or geocoded location information from the Yahoo! Maps APIs for any future use; (ix) use the stand-alone geocoder for any use other than displaying Yahoo! Maps or displaying points on Yahoo! Maps;”
Bing (:bing
)¶ ↑
- API key
-
required
- Key signup
- Quota
-
50,000 requests/24 hrs
- Region
-
world
- SSL support
-
no
- Languages
-
?
- Documentation
- Terms of Service
- Limitations
-
No country codes or state names. Must be used on “public-facing, non-password protected web sites,” “in conjunction with Bing Maps or an application that integrates Bing Maps.”
Nominatim (:nominatim
)¶ ↑
- API key
-
none
- Quota
-
1 request/second
- Region
-
world
- SSL support
-
no
- Languages
-
?
- Documentation
- Terms of Service
- Limitations
-
Please limit request rate to 1 per second and include your contact information in User-Agent headers. Data licensed under CC-BY-SA (you must provide attribution).
Yandex (:yandex
)¶ ↑
- API key
-
required
- Key signup
- Quota
-
?
- Region
-
Russia
- SSL support
-
no
- Languages
-
Russian, Belarusian, and Ukrainian
- Documentation
-
api.yandex.ru/maps/geocoder/doc/desc/concepts/response_structure.xml
- Terms of Service
- Limitations
-
?
Geocoder.ca (:geocoder_ca
)¶ ↑
- API key
-
none
- Quota
-
?
- Region
-
US and Canada
- SSL support
-
no
- Languages
-
English
- Documentation
-
?
- Terms of Service
- Limitations
-
“Under no circumstances can our data be re-distributed or re-sold by anyone to other parties without our written permission.”
FreeGeoIP¶ ↑
- API key
-
none
- Quota
-
1000 requests per hour. After reaching the hourly quota, all of your requests will result in HTTP 403 (Forbidden) until it clears up on the next roll over.
- Region
-
world
- SSL support
-
no
- Languages
-
English
- Documentation
- Terms of Service
-
?
- Limitations
-
?
Caching¶ ↑
It’s a good idea, when relying on any external service, to cache retrieved data. When implemented correctly it improves your app’s response time and stability. It’s easy to cache geocoding results with Geocoder, just configure a cache store:
Geocoder::Configuration.cache = Redis.new
This example uses Redis, but the cache store can be any object that supports these methods:
-
store#[](key)
- retrieves a value -
store#[]=(key, value)
- stores a value -
store#keys
- lists all keys
Even a plain Ruby hash will work, though it’s not a great choice (cleared out when app is restarted, not shared between app instances, etc).
You can also set a custom prefix to be used for cache keys:
Geocoder::Configuration.cache_prefix = "..."
By default the prefix is geocoder: