-
Alex Reisner authored
Add badges.
Alex Reisner authoredAdd badges.
Geocoder
A complete geocoding solution for Ruby.
Key features:
- Forward and reverse geocoding, and IP address geocoding.
- Connects to more than 40 APIs worldwide.
- Performance-enhancing feaures like caching.
- Advanced configuration allows different parameters and APIs to be used in different conditions.
- Integrates with ActiveRecord and Mongoid.
- Basic geospatial queries: search within radius (or rectangle, or ring).
Compatibility:
- Supports multiple Ruby versions: Ruby 1.9.3, 2.x, and JRuby.
- Supports multiple databases: MySQL, PostgreSQL, SQLite, and MongoDB (1.7.0 and higher).
- Supports Rails 3, 4, and 5. If you need to use it with Rails 2 please see the
rails2
branch (no longer maintained, limited feature set). - Works very well outside of Rails, you just need to install either the
json
(for MRI) orjson_pure
(for JRuby) gem.
Table of Contents
Basic Features:
- Basic Search
- Geocoding Objects
- Geospatial Database Queries
- Geocoding HTTP Requests
- Geocoding Service ("Lookup") Configuration
Advanced Features:
- Performance and Optimization
- Advanced Model Configuration
- Advanced Database Queries
- Batch Geocoding
- Testing
- Error Handling
- Command Line Interface
The Rest:
See Also:
- Guide to Geocoding APIs (formerly part of this README)
Basic Search
In its simplest form, Geocoder takes an address and searches for its latitude/longitude coordinates:
results = Geocoder.search("Paris")
results.first.coordinates
=> [48.856614, 2.3522219] # latitude and longitude
The reverse is possible too. Given coordinates, it finds an address:
results = Geocoder.search([48.856614, 2.3522219])
results.first.address
=> "Hôtel de Ville, 75004 Paris, France"
You can also look up the location of an IP addresses:
results = Geocoder.search("172.56.21.89")
results.first.coordinates
=> [30.267153, -97.7430608]
results.first.country
=> "United States"
The success and accuracy of geocoding depends entirely on the API being used to do these lookups. Most queries work fairly well with the default configuration, but every application has different needs and every API has its particular strengths and weaknesses. If you need better coverage for your application you'll want to get familiar with the large number of supported APIs, listed in the API Guide.
Geocoding Objects
To automatically geocode your objects:
1. Your model must provide a method that returns an address to geocode. This can be a single attribute, but it can also be a method that returns a string assembled from different attributes (eg: city
, state
, and country
). For example, if your model has street
, city
, state
, and country
attributes you might do something like this:
def address
[street, city, state, country].compact.join(', ')
end
2. Your model must have a way to store latitude/longitude coordinates. With ActiveRecord, add two attributes/columns (of type float or decimal) called latitude
and longitude
. For MongoDB, use a single field (of type Array) called coordinates
(i.e., field :coordinates, type: Array
). (See Advanced Model Configuration for using different attribute names.)
3. In your model, tell geocoder where to find the object's address:
geocoded_by :address
This adds a geocode
method which you can invoke via callback:
after_validation :geocode
Reverse geocoding (given lat/lon coordinates, find an address) is similar:
reverse_geocoded_by :latitude, :longitude
after_validation :reverse_geocode
With any geocoded objects, you can do the following:
obj.distance_to([43.9,-98.6]) # distance from obj to point
obj.bearing_to([43.9,-98.6]) # bearing from obj to point
obj.bearing_from(obj2) # bearing from obj2 to obj
The bearing_from/to
methods take a single argument which can be: a [lat,lon]
array, a geocoded object, or a geocodable address (string). The distance_from/to
methods also take a units argument (:mi
, :km
, or :nm
for nautical miles). See Distance and Bearing below for more info.
One More Thing for MongoDB!
Before you can call geocoded_by
you'll need to include the necessary module using one of the following:
include Geocoder::Model::Mongoid
include Geocoder::Model::MongoMapper
Latitude/Longitude Order in MongoDB
Everywhere coordinates are passed to methods as two-element arrays, Geocoder expects them to be in the order: [lat, lon]
. However, as per the GeoJSON spec, MongoDB requires that coordinates be stored longitude-first ([lon, lat]
), so internally they are stored "backwards." Geocoder's methods attempt to hide this, so calling obj.to_coordinates
(a method added to the object by Geocoder via geocoded_by
) returns coordinates in the conventional order:
obj.to_coordinates # => [37.7941013, -122.3951096] # [lat, lon]
whereas calling the object's coordinates attribute directly (obj.coordinates
by default) returns the internal representation which is probably the reverse of what you want:
obj.coordinates # => [-122.3951096, 37.7941013] # [lon, lat]
So, be careful.
Use Outside of Rails
To use Geocoder with ActiveRecord and a framework other than Rails (like Sinatra or Padrino), you will need to add this in your model before calling Geocoder methods:
extend Geocoder::Model::ActiveRecord
Geospatial Database Queries
For ActiveRecord models:
To find objects by location, use the following scopes:
Venue.near('Omaha, NE, US') # venues within 20 miles of Omaha
Venue.near([40.71, -100.23], 50) # venues within 50 miles of a point
Venue.near([40.71, -100.23], 50, units: :km) # venues within 50 kilometres of a point
Venue.geocoded # venues with coordinates
Venue.not_geocoded # venues without coordinates
by default, objects are ordered by distance. To remove the ORDER BY clause use the following:
Venue.near('Omaha', 20, order: false)
With geocoded objects you can do things like this:
if obj.geocoded?
obj.nearbys(30) # other objects within 30 miles
obj.distance_from([40.714,-100.234]) # distance from arbitrary point to object
obj.bearing_to("Paris, France") # direction from object to arbitrary point
end
Some utility methods are also available:
# look up coordinates of some location
Geocoder.coordinates("25 Main St, Cooperstown, NY")
=> [42.700149, -74.922767]
# distance between Eiffel Tower and Empire State Building
Geocoder::Calculations.distance_between([47.858205,2.294359], [40.748433,-73.985655])
=> 3619.77359999382 # in configured units (default miles)
# find the geographic center (aka center of gravity) of objects or points
Geocoder::Calculations.geographic_center([city1, city2, [40.22,-73.99], city4])
=> [35.14968, -90.048929]
Please see the code for more methods and detailed information about arguments (eg, working with kilometers).
For MongoDB-backed models:
Please do not use Geocoder's near
method. Instead use MongoDB's built-in geospatial query language, which is faster. Mongoid also provides a DSL for geospatial queries.
Geocoding HTTP Requests
Geocoder adds location
and safe_location
methods to the standard Rack::Request
object so you can easily look up the location of any HTTP request by IP address. For example, in a Rails controller or a Sinatra app:
# returns Geocoder::Result object
result = request.location
The location
method is vulnerable to trivial IP address spoofing via HTTP headers. If that's a problem for your application, use safe_location
instead, but be aware that safe_location
will not try to trace a request's originating IP through proxy headers; you will instead get the location of the last proxy the request passed through, if any (excepting any proxies you have explicitly whitelisted in your Rack config).
Note that these methods will usually return nil
in test and development environments because things like "localhost" and "0.0.0.0" are not geocodable IP addresses.
Geocoding Service ("Lookup") Configuration
Geocoder supports a variety of street and IP address geocoding services. The default lookups are :google
for street addresses and :ipinfo_io
for IP addresses. Please see the API Guide for details on specific geocoding services (not all settings are supported by all services).
To create a Rails initializer with sample configuration:
rails generate geocoder:config
Some common options are:
# config/initializers/geocoder.rb
Geocoder.configure(
# street address geocoding service (default :google)
lookup: :yandex,
# IP address geocoding service (default :ipinfo_io)
ip_lookup: :maxmind,
# to use an API key:
api_key: "...",
# geocoding service request timeout, in seconds (default 3):
timeout: 5,
# set default units to kilometers:
units: :km,
# caching (see [below](#caching) for details):
cache: Redis.new,
cache_prefix: "..."
)
Please see lib/geocoder/configuration.rb
for a complete list of configuration options. Additionally, some lookups have their own special configuration options which are directly supported by Geocoder. For example, to specify a value for Google's bounds
parameter:
# with Google:
Geocoder.search("Paris", bounds: [[32.1,-95.9], [33.9,-94.3]])
Please see the source code for each lookup to learn about directly supported parameters. Parameters which are not directly supported can be specified using the :params
option, which appends options to the query string of the geocoding request. For example:
# Nominatim's `countrycodes` parameter:
Geocoder.search("Paris", params: {countrycodes: "gb,de,fr,es,us"})
# Google's `region` parameter:
Geocoder.search("Paris", params: {region: "..."})
Configuring Multiple Services
You can configure multiple geocoding services at once by using the service's name as a key for a sub-configuration hash, like this:
Geocoder.configure(
timeout: 2,
cache: Redis.new,
yandex: {
api_key: "...",
timeout: 5
},
baidu: {
api_key: "..."
},
maxmind: {
api_key: "...",
service: :omni
}
)
Lookup-specific settings override global settings so, in this example, the timeout for all lookups is 2 seconds, except for Yandex which is 5.
Performance and Optimization
Database Indices
In MySQL and Postgres, queries use a bounding box to limit the number of points over which a more precise distance calculation needs to be done. To take advantage of this optimisation, you need to add a composite index on latitude and longitude. In your Rails migration:
add_index :table, [:latitude, :longitude]
In MongoDB, by default, the methods geocoded_by
and reverse_geocoded_by
create a geospatial index. You can avoid index creation with the :skip_index option
, for example:
include Geocoder::Model::Mongoid
geocoded_by :address, skip_index: true
Avoiding Unnecessary API Requests
Geocoding only needs to be performed under certain conditions. To avoid unnecessary work (and quota usage) you will probably want to geocode an object only when:
- an address is present
- the address has been changed since last save (or it has never been saved)
The exact code will vary depending on the method you use for your geocodable string, but it would be something like this:
after_validation :geocode, if: ->(obj){ obj.address.present? and obj.address_changed? }
Caching
When relying on any external service, it's always a good idea to cache retrieved data. When implemented correctly, it improves your app's response time and stability. It's easy to cache geocoding results with Geocoder -- just configure a cache store:
Geocoder.configure(cache: Redis.new)
This example uses Redis, but the cache store can be any object that supports these methods:
-
store#[](key)
or#get
or#read
- retrieves a value -
store#[]=(key, value)
or#set
or#write
- stores a value -
store#del(url)
- deletes a value -
store#keys
- (Optional) Returns array of keys. Used if you wish to expire the entire cache (see below).
Even a plain Ruby hash will work, though it's not a great choice (cleared out when app is restarted, not shared between app instances, etc).
You can also set a custom prefix to be used for cache keys:
Geocoder.configure(cache_prefix: "...")
By default the prefix is geocoder:
If you need to expire cached content:
Geocoder::Lookup.get(Geocoder.config[:lookup]).cache.expire(:all) # expire cached results for current Lookup
Geocoder::Lookup.get(:google).cache.expire("http://...") # expire cached result for a specific URL
Geocoder::Lookup.get(:google).cache.expire(:all) # expire cached results for Google Lookup
# expire all cached results for all Lookups.
# Be aware that this methods spawns a new Lookup object for each Service
Geocoder::Lookup.all_services.each{|service| Geocoder::Lookup.get(service).cache.expire(:all)}
Do not include the prefix when passing a URL to be expired. Expiring :all
will only expire keys with the configured prefix -- it will not expire every entry in your key/value store.
For an example of a cache store with URL expiry, please see examples/autoexpire_cache.rb
Before you implement caching in your app please be sure that doing so does not violate the Terms of Service for your geocoding service.
Advanced Model Configuration
You are not stuck with the latitude
and longitude
database column names (with ActiveRecord) or the coordinates
array (Mongo) for storing coordinates. For example:
geocoded_by :address, latitude: :lat, longitude: :lon # ActiveRecord
geocoded_by :address, coordinates: :coords # MongoDB
For reverse geocoding, you can specify the attribute where the address will be stored. For example:
reverse_geocoded_by :latitude, :longitude, address: :loc # ActiveRecord
reverse_geocoded_by :coordinates, address: :street_address # MongoDB
To specify geocoding parameters in your model:
geocoded_by :address, params: {region: "..."}
Supported parameters: :lookup
, :ip_lookup
, :language
, and :params
. You can specify an anonymous function if you want to set these on a per-request basis. For example, to use different lookups for objects in different regions:
geocoded_by :address, lookup: lambda{ |obj| obj.geocoder_lookup }
def geocoder_lookup
if country_code == "RU"
:yandex
elsif country_code == "CN"
:baidu
else
:google
end
end
Custom Result Handling
So far we have seen examples where geocoding results are assigned automatically to predefined object attributes. However, you can skip the auto-assignment by providing a block which handles the parsed geocoding results any way you like, for example:
reverse_geocoded_by :latitude, :longitude do |obj,results|
if geo = results.first
obj.city = geo.city
obj.zipcode = geo.postal_code
obj.country = geo.country_code
end
end
after_validation :reverse_geocode
Every Geocoder::Result
object, result
, provides the following data:
-
result.latitude
- float -
result.longitude
- float -
result.coordinates
- array of the above two in the form of[lat,lon]
-
result.address
- string -
result.city
- string -
result.state
- string -
result.state_code
- string -
result.postal_code
- string -
result.country
- string -
result.country_code
- string
Most APIs return other data in addition to these globally-supported attributes. To directly access the full response, call the #data
method of any Geocoder::Result object. See the API Guide for links to documentation for all geocoding services.
Forward and Reverse Geocoding in the Same Model
You can apply both forward and reverse geocoding to the same model (i.e. users can supply an address or coordinates and Geocoder fills in whatever's missing) but you'll need to provide two different address methods:
- one for storing the fetched address (when reverse geocoding)
- one for providing an address to use when fetching coordinates (forward geocoding)
For example:
class Venue
# build an address from street, city, and state attributes
geocoded_by :address_from_components
# store the fetched address in the full_address attribute
reverse_geocoded_by :latitude, :longitude, address: :full_address
end
The same goes for latitude/longitude. However, for purposes of querying the database, there can be only one authoritative set of latitude/longitude attributes for use in database queries. This is whichever you specify last. For example, here the attributes without the fetched_
prefix will be authoritative:
class Venue
geocoded_by :address,
latitude: :fetched_latitude,
longitude: :fetched_longitude
reverse_geocoded_by :latitude, :longitude
end
Advanced Database Queries
The following apply to ActiveRecord only. For MongoDB, please use the built-in geospatial features.
The default near
search looks for objects within a circle. To search within a doughnut or ring use the :min_radius
option:
Venue.near("Austin, TX", 200, min_radius: 40)
To search within a rectangle (note that results will not include distance
and bearing
attributes):
sw_corner = [40.71, 100.23]
ne_corner = [36.12, 88.65]
Venue.within_bounding_box(sw_corner, ne_corner)
To search for objects near a certain point where each object has a different distance requirement (which is defined in the database), you can pass a column name for the radius:
Venue.near([40.71, 99.23], :effective_radius)
If you store multiple sets of coordinates for each object, you can specify latitude and longitude columns to use for a search:
Venue.near("Paris", 50, latitude: :secondary_latitude, longitude: :secondary_longitude)
Distance and Bearing
When you run a geospatial query, the returned objects have two attributes added:
-
obj.distance
- number of miles from the search point to this object -
obj.bearing
- direction from the search point to this object
Results are automatically sorted by distance from the search point, closest to farthest. Bearing is given as a number of degrees clockwise from due north, for example:
-
0
- due north -
180
- due south -
90
- due east -
270
- due west -
230.1
- southwest -
359.9
- almost due north
You can convert these to compass point names via provided utility method:
Geocoder::Calculations.compass_point(355) # => "N"
Geocoder::Calculations.compass_point(45) # => "NE"
Geocoder::Calculations.compass_point(208) # => "SW"
Note: when running queries on SQLite, distance
and bearing
are provided for consistency only. They are not very accurate.
Batch Geocoding
If you have just added geocoding to an existing application with a lot of objects, you can use this Rake task to geocode them all:
rake geocode:all CLASS=YourModel