Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
require 'test/unit'
require 'fox16'
include Fox
class TC_FXVec3f < Test::Unit::TestCase
def test_default_constructor
FXVec3f.new
end
def test_copy_constructor
vec = FXVec3f.new(1, 2, 3)
assert_equal(vec, FXVec3f.new(vec)) # also tests the '==' method!
end
def test_construct_from_components
vec = FXVec3f.new(1, 2, 3)
assert_equal(1, vec[0])
assert_equal(1, vec.x)
assert_equal(2, vec[1])
assert_equal(2, vec.y)
assert_equal(3, vec[2])
assert_equal(3, vec.z)
end
def test_construct_from_color
vec = FXVec3f.new(FXRGB(1, 1, 1))
assert_in_delta(0.003921568627, vec.x, 1.0e-7)
assert_in_delta(0.003921568627, vec.y, 1.0e-7)
assert_in_delta(0.003921568627, vec.z, 1.0e-7)
end
def test_getitem
v = FXVec3f.new(1, 2, 3)
assert_equal(1, v[0])
assert_equal(2, v[1])
assert_equal(3, v[2])
end
def test_setitem
v = FXVec3f.new
assert_equal(1, v[0] = 1)
assert_equal(2, v[1] = 2)
assert_equal(3, v[2] = 3)
end
def test_bounds_checks
vec = FXVec3f.new
assert_raises(IndexError) { vec[-1] }
assert_raises(IndexError) { vec[3] }
assert_raises(IndexError) { vec[-1] = 0.0 }
assert_raises(IndexError) { vec[3] = 0.0 }
end
def test_unary_minus
assert_equal(FXVec3f.new(-1, -2, -3), -FXVec3f.new(1, 2, 3))
end
def test_add
a = FXVec3f.new(1, 2, 3)
b = FXVec3f.new(2, 4, 6)
c = FXVec3f.new(3, 6, 9)
assert_equal(c, a + b)
end
def test_subtract
a = FXVec3f.new(3, 6, 9)
b = FXVec3f.new(2, 4, 6)
c = FXVec3f.new(1, 2, 3)
assert_equal(c, a - b)
end
def test_multiply_by_scalar
v1 = FXVec3f.new(3, 6, 9)
v2 = FXVec3f.new(6, 12, 18)
assert_equal(v2, v1*2)
end
def test_divide_by_scalar
v1 = FXVec3f.new(6, 12, 18)
v2 = FXVec3f.new(3, 6, 9)
assert_equal(v2, v1/2)
assert_raises(ZeroDivisionError) {
v1/0
}
end
def test_dot_product
v1 = FXVec3f.new(1, 2, 3)
v2 = FXVec3f.new(1, 2, 3)
assert_equal(14, v1*v2)
assert_equal(14, v2*v1)
assert_equal(14, v1.dot(v2))
assert_equal(14, v2.dot(v1))
end
def test_cross_product
end
def test_length
v = FXVec3f.new(1, 1, 1)
assert_in_delta(Math.sqrt(3), v.length, 1.0e-7)
end
def test_length2
v = FXVec3f.new(1, 1, 1)
assert_equal(3, v.length2)
end
def test_normalize
vec = FXVec3f.new(1, 1, 1).normalize
assert_in_delta(1/Math.sqrt(3), vec.x, 1.0e-7)
assert_in_delta(1/Math.sqrt(3), vec.y, 1.0e-7)
assert_in_delta(1/Math.sqrt(3), vec.z, 1.0e-7)
end
def test_lo
v1 = FXVec3f.new(3, 2, 1)
v2 = FXVec3f.new(1, 2, 3)
assert_equal(v1.lo(v2), v2.lo(v1))
lo = v1.lo(v2)
assert_equal(1, lo.x)
assert_equal(2, lo.y)
assert_equal(1, lo.z)
end
def test_hi
v1 = FXVec3f.new(1, 2, 3)
v2 = FXVec3f.new(3, 2, 1)
assert_equal(v1.hi(v2), v2.hi(v1))
hi = v1.hi(v2)
assert_equal(3, hi.x)
assert_equal(2, hi.y)
assert_equal(3, hi.z)
end
def test_to_a
ary = FXVec3f.new(1, 1, 1).to_a
assert_equal(Array, ary.class)
assert_equal(3, ary.length)
assert_equal(1, ary[0])
assert_equal(1, ary[1])
assert_equal(1, ary[2])
end
def test_equal
assert(FXVec3f.new(1, 2, 3) == FXVec3f.new(1, 2, 3))
end
end